176 lines
5.7 KiB
Python
176 lines
5.7 KiB
Python
from __future__ import absolute_import
|
|
from __future__ import print_function
|
|
from __future__ import division
|
|
|
|
from collections import OrderedDict
|
|
import shutil
|
|
import warnings
|
|
import os
|
|
import os.path as osp
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
from .iotools import mkdir_if_missing
|
|
|
|
|
|
def save_checkpoint(state, save_dir, is_best=False, remove_module_from_keys=False):
|
|
mkdir_if_missing(save_dir)
|
|
if remove_module_from_keys:
|
|
# remove 'module.' in state_dict's keys
|
|
state_dict = state['state_dict']
|
|
new_state_dict = OrderedDict()
|
|
for k, v in state_dict.items():
|
|
if k.startswith('module.'):
|
|
k = k[7:]
|
|
new_state_dict[k] = v
|
|
state['state_dict'] = new_state_dict
|
|
# save
|
|
epoch = state['epoch']
|
|
fpath = osp.join(save_dir, 'model.pth.tar-' + str(epoch))
|
|
torch.save(state, fpath)
|
|
if is_best:
|
|
shutil.copy(fpath, osp.join(osp.dirname(fpath), 'best_model.pth.tar'))
|
|
|
|
|
|
def resume_from_checkpoint(ckpt_path, model, optimizer=None):
|
|
print('Loading checkpoint from "{}"'.format(ckpt_path))
|
|
ckpt = torch.load(ckpt_path)
|
|
model.load_state_dict(ckpt['state_dict'])
|
|
print('Loaded model weights')
|
|
if optimizer is not None:
|
|
optimizer.load_state_dict(ckpt['optimizer'])
|
|
print('Loaded optimizer')
|
|
start_epoch = ckpt['epoch']
|
|
print('Epoch will start from {} (previous rank1 = {})'.format(start_epoch, ckpt['rank1']))
|
|
return start_epoch
|
|
|
|
|
|
def adjust_learning_rate(optimizer, base_lr, epoch, stepsize=20, gamma=0.1,
|
|
linear_decay=False, final_lr=0, max_epoch=100):
|
|
if linear_decay:
|
|
# linearly decay learning rate from base_lr to final_lr
|
|
frac_done = epoch / max_epoch
|
|
lr = frac_done * final_lr + (1. - frac_done) * base_lr
|
|
else:
|
|
# decay learning rate by gamma for every stepsize
|
|
lr = base_lr * (gamma ** (epoch // stepsize))
|
|
|
|
for param_group in optimizer.param_groups:
|
|
param_group['lr'] = lr
|
|
|
|
|
|
def set_bn_to_eval(m):
|
|
# 1. no update for running mean and var
|
|
# 2. scale and shift parameters are still trainable
|
|
classname = m.__class__.__name__
|
|
if classname.find('BatchNorm') != -1:
|
|
m.eval()
|
|
|
|
|
|
def open_all_layers(model):
|
|
"""
|
|
Open all layers in model for training.
|
|
|
|
Args:
|
|
- model (nn.Module): neural net model.
|
|
"""
|
|
model.train()
|
|
for p in model.parameters():
|
|
p.requires_grad = True
|
|
|
|
|
|
def open_specified_layers(model, open_layers):
|
|
"""
|
|
Open specified layers in model for training while keeping
|
|
other layers frozen.
|
|
|
|
Args:
|
|
- model (nn.Module): neural net model.
|
|
- open_layers (list): list of layer names.
|
|
"""
|
|
if isinstance(model, nn.DataParallel):
|
|
model = model.module
|
|
|
|
for layer in open_layers:
|
|
assert hasattr(model, layer), '"{}" is not an attribute of the model, please provide the correct name'.format(layer)
|
|
|
|
for name, module in model.named_children():
|
|
if name in open_layers:
|
|
module.train()
|
|
for p in module.parameters():
|
|
p.requires_grad = True
|
|
else:
|
|
module.eval()
|
|
for p in module.parameters():
|
|
p.requires_grad = False
|
|
|
|
|
|
def count_num_param(model):
|
|
num_param = sum(p.numel() for p in model.parameters()) / 1e+06
|
|
|
|
if isinstance(model, nn.DataParallel):
|
|
model = model.module
|
|
|
|
if hasattr(model, 'classifier') and isinstance(model.classifier, nn.Module):
|
|
# we ignore the classifier because it is unused at test time
|
|
num_param -= sum(p.numel() for p in model.classifier.parameters()) / 1e+06
|
|
return num_param
|
|
|
|
|
|
def accuracy(output, target, topk=(1,)):
|
|
"""Computes the accuracy over the k top predictions for the specified values of k"""
|
|
with torch.no_grad():
|
|
maxk = max(topk)
|
|
batch_size = target.size(0)
|
|
|
|
if isinstance(output, (tuple, list)):
|
|
output = output[0]
|
|
|
|
_, pred = output.topk(maxk, 1, True, True)
|
|
pred = pred.t()
|
|
correct = pred.eq(target.view(1, -1).expand_as(pred))
|
|
|
|
res = []
|
|
for k in topk:
|
|
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
|
|
acc = correct_k.mul_(100.0 / batch_size)
|
|
res.append(acc.item())
|
|
return res
|
|
|
|
|
|
def load_pretrained_weights(model, weight_path):
|
|
"""Load pretrianed weights to model
|
|
|
|
Incompatible layers (unmatched in name or size) will be ignored
|
|
|
|
Args:
|
|
- model (nn.Module): network model, which must not be nn.DataParallel
|
|
- weight_path (str): path to pretrained weights
|
|
"""
|
|
checkpoint = torch.load(weight_path)
|
|
if 'state_dict' in checkpoint:
|
|
state_dict = checkpoint['state_dict']
|
|
else:
|
|
state_dict = checkpoint
|
|
model_dict = model.state_dict()
|
|
new_state_dict = OrderedDict()
|
|
matched_layers, discarded_layers = [], []
|
|
for k, v in state_dict.items():
|
|
# If the pretrained state_dict was saved as nn.DataParallel,
|
|
# keys would contain "module.", which should be ignored.
|
|
if k.startswith('module.'):
|
|
k = k[7:]
|
|
if k in model_dict and model_dict[k].size() == v.size():
|
|
new_state_dict[k] = v
|
|
matched_layers.append(k)
|
|
else:
|
|
discarded_layers.append(k)
|
|
model_dict.update(new_state_dict)
|
|
model.load_state_dict(model_dict)
|
|
if len(matched_layers) == 0:
|
|
warnings.warn('The pretrained weights "{}" cannot be loaded, please check the key names manually (** ignored and continue **)'.format(weight_path))
|
|
else:
|
|
print('Successfully loaded pretrained weights from "{}"'.format(weight_path))
|
|
if len(discarded_layers) > 0:
|
|
print("** The following layers are discarded due to unmatched keys or layer size: {}".format(discarded_layers)) |