deep-person-reid/scripts/default_parser.py

289 lines
14 KiB
Python

from __future__ import absolute_import
from __future__ import print_function
import argparse
def init_parser():
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--app', type=str, default='image', choices=['image', 'video'],
help='application')
parser.add_argument('--loss', type=str, default='softmax', choices=['softmax', 'triplet'],
help='methodology')
# ************************************************************
# Datasets
# ************************************************************
parser.add_argument('--root', type=str, default='reid-data', required=True,
help='root path to data directory')
parser.add_argument('-s', '--sources', type=str, required=True, nargs='+',
help='source datasets (delimited by space)')
parser.add_argument('-t', '--targets', type=str, required=False, nargs='+',
help='target datasets (delimited by space)')
parser.add_argument('-j', '--workers', type=int, default=4,
help='number of data loading workers (tips: 4 or 8 times number of gpus)')
parser.add_argument('--split-id', type=int, default=0,
help='split index (note: 0-based)')
parser.add_argument('--height', type=int, default=256,
help='height of an image')
parser.add_argument('--width', type=int, default=128,
help='width of an image')
parser.add_argument('--train-sampler', type=str, default='RandomSampler',
help='sampler for trainloader')
parser.add_argument('--combineall', action='store_true',
help='combine all data in a dataset (train+query+gallery) for training')
# ************************************************************
# Data augmentation
# ************************************************************
parser.add_argument('--random-erase', action='store_true',
help='use random erasing for data augmentation')
parser.add_argument('--color-jitter', action='store_true',
help='randomly change the brightness, contrast and saturation')
parser.add_argument('--color-aug', action='store_true',
help='randomly alter the intensities of RGB channels')
# ************************************************************
# Video datasets
# ************************************************************
parser.add_argument('--seq-len', type=int, default=15,
help='number of images to sample in a tracklet')
parser.add_argument('--sample-method', type=str, default='evenly',
help='how to sample images from a tracklet')
parser.add_argument('--pooling-method', type=str, default='avg', choices=['avg', 'max'],
help='how to pool features over a tracklet (for video reid)')
# ************************************************************
# Dataset-specific setting
# ************************************************************
parser.add_argument('--cuhk03-labeled', action='store_true',
help='use labeled images, if false, use detected images')
parser.add_argument('--cuhk03-classic-split', action='store_true',
help='use classic split by Li et al. CVPR\'14')
parser.add_argument('--use-metric-cuhk03', action='store_true',
help='use cuhk03\'s metric for evaluation')
parser.add_argument('--market1501-500k', action='store_true',
help='add 500k distractors to the gallery set for market1501')
# ************************************************************
# Optimization options
# ************************************************************
parser.add_argument('--optim', type=str, default='adam',
help='optimization algorithm (see optimizers.py)')
parser.add_argument('--lr', type=float, default=0.0003,
help='initial learning rate')
parser.add_argument('--weight-decay', type=float, default=5e-04,
help='weight decay')
# sgd
parser.add_argument('--momentum', type=float, default=0.9,
help='momentum factor for sgd and rmsprop')
parser.add_argument('--sgd-dampening', type=float, default=0,
help='sgd\'s dampening for momentum')
parser.add_argument('--sgd-nesterov', action='store_true',
help='whether to enable sgd\'s Nesterov momentum')
# rmsprop
parser.add_argument('--rmsprop-alpha', type=float, default=0.99,
help='rmsprop\'s smoothing constant')
# adam/amsgrad
parser.add_argument('--adam-beta1', type=float, default=0.9,
help='exponential decay rate for adam\'s first moment')
parser.add_argument('--adam-beta2', type=float, default=0.999,
help='exponential decay rate for adam\'s second moment')
# ************************************************************
# Training hyperparameters
# ************************************************************
parser.add_argument('--max-epoch', type=int, default=60,
help='maximum epochs to run')
parser.add_argument('--start-epoch', type=int, default=0,
help='manual epoch number (useful when restart)')
parser.add_argument('--batch-size', type=int, default=32,
help='batch size')
parser.add_argument('--fixbase-epoch', type=int, default=0,
help='number of epochs to fix base layers')
parser.add_argument('--open-layers', type=str, nargs='+', default=['classifier'],
help='open specified layers for training while keeping others frozen')
parser.add_argument('--staged-lr', action='store_true',
help='set different lr to different layers')
parser.add_argument('--new-layers', type=str, nargs='+', default=['classifier'],
help='newly added layers with default lr')
parser.add_argument('--base-lr-mult', type=float, default=0.1,
help='learning rate multiplier for base layers')
# ************************************************************
# Learning rate scheduler options
# ************************************************************
parser.add_argument('--lr-scheduler', type=str, default='multi_step',
help='learning rate scheduler (see lr_schedulers.py)')
parser.add_argument('--stepsize', type=int, default=[20, 40], nargs='+',
help='stepsize to decay learning rate')
parser.add_argument('--gamma', type=float, default=0.1,
help='learning rate decay')
# ************************************************************
# Cross entropy loss
# ************************************************************
parser.add_argument('--label-smooth', action='store_true',
help='use label smoothing regularizer in cross entropy loss')
# ************************************************************
# Hard triplet loss
# ************************************************************
parser.add_argument('--margin', type=float, default=0.3,
help='margin for triplet loss')
parser.add_argument('--num-instances', type=int, default=4,
help='number of instances per identity')
parser.add_argument('--weight-t', type=float, default=1,
help='weight to balance hard triplet loss')
parser.add_argument('--weight-x', type=float, default=1,
help='weight to balance cross entropy loss')
# ************************************************************
# Architecture
# ************************************************************
parser.add_argument('-a', '--arch', type=str, default='resnet50',
help='model architecture')
parser.add_argument('--no-pretrained', action='store_true',
help='do not load pretrained weights')
# ************************************************************
# Test settings
# ************************************************************
parser.add_argument('--load-weights', type=str, default='',
help='load pretrained weights but ignore layers that do not match in size')
parser.add_argument('--evaluate', action='store_true',
help='evaluate only')
parser.add_argument('--eval-freq', type=int, default=-1,
help='evaluation frequency (set to -1 to test only in the end)')
parser.add_argument('--start-eval', type=int, default=0,
help='start to evaluate after a specific epoch')
parser.add_argument('--dist-metric', type=str, default='euclidean',
help='distance metric')
parser.add_argument('--normalize-feature', action='store_true',
help='normalize feature vectors before calculating distance')
parser.add_argument('--ranks', type=str, default=[1, 5, 10, 20], nargs='+',
help='cmc ranks')
parser.add_argument('--rerank', action='store_true',
help='use person re-ranking (by Zhong et al. CVPR2017)')
parser.add_argument('--visrank', action='store_true',
help='visualize ranked results, only available in evaluation mode')
parser.add_argument('--visrank-topk', type=int, default=20,
help='visualize topk ranks')
# ************************************************************
# Miscs
# ************************************************************
parser.add_argument('--print-freq', type=int, default=20,
help='print frequency')
parser.add_argument('--seed', type=int, default=1,
help='manual seed')
parser.add_argument('--resume', type=str, default='', metavar='PATH',
help='resume from a checkpoint')
parser.add_argument('--save-dir', type=str, default='log',
help='path to save log and model weights')
parser.add_argument('--use-cpu', action='store_true',
help='use cpu')
parser.add_argument('--gpu-devices', type=str, default='0',
help='gpu device ids for CUDA_VISIBLE_DEVICES')
parser.add_argument('--use-avai-gpus', action='store_true',
help='use available gpus instead of specified devices')
return parser
def imagedata_kwargs(parsed_args):
return {
'root': parsed_args.root,
'sources': parsed_args.sources,
'targets': parsed_args.targets,
'height': parsed_args.height,
'width': parsed_args.width,
'random_erase': parsed_args.random_erase,
'color_jitter': parsed_args.color_jitter,
'color_aug': parsed_args.color_aug,
'use_cpu': parsed_args.use_cpu,
'split_id': parsed_args.split_id,
'combineall': parsed_args.combineall,
'batch_size': parsed_args.batch_size,
'workers': parsed_args.workers,
'num_instances': parsed_args.num_instances,
'train_sampler': parsed_args.train_sampler,
# image
'cuhk03_labeled': parsed_args.cuhk03_labeled,
'cuhk03_classic_split': parsed_args.cuhk03_classic_split,
'market1501_500k': parsed_args.market1501_500k,
}
def videodata_kwargs(parsed_args):
return {
'root': parsed_args.root,
'sources': parsed_args.sources,
'targets': parsed_args.targets,
'height': parsed_args.height,
'width': parsed_args.width,
'random_erase': parsed_args.random_erase,
'color_jitter': parsed_args.color_jitter,
'color_aug': parsed_args.color_aug,
'use_cpu': parsed_args.use_cpu,
'split_id': parsed_args.split_id,
'combineall': parsed_args.combineall,
'batch_size': parsed_args.batch_size,
'workers': parsed_args.workers,
'num_instances': parsed_args.num_instances,
'train_sampler': parsed_args.train_sampler,
# video
'seq_len': parsed_args.seq_len,
'sample_method': parsed_args.sample_method
}
def optimizer_kwargs(parsed_args):
return {
'optim': parsed_args.optim,
'lr': parsed_args.lr,
'weight_decay': parsed_args.weight_decay,
'momentum': parsed_args.momentum,
'sgd_dampening': parsed_args.sgd_dampening,
'sgd_nesterov': parsed_args.sgd_nesterov,
'rmsprop_alpha': parsed_args.rmsprop_alpha,
'adam_beta1': parsed_args.adam_beta1,
'adam_beta2': parsed_args.adam_beta2,
'staged_lr': parsed_args.staged_lr,
'new_layers': parsed_args.new_layers,
'base_lr_mult': parsed_args.base_lr_mult
}
def lr_scheduler_kwargs(parsed_args):
return {
'lr_scheduler': parsed_args.lr_scheduler,
'stepsize': parsed_args.stepsize,
'gamma': parsed_args.gamma
}
def engine_run_kwargs(parsed_args):
return {
'save_dir': parsed_args.save_dir,
'max_epoch': parsed_args.max_epoch,
'start_epoch': parsed_args.start_epoch,
'fixbase_epoch': parsed_args.fixbase_epoch,
'open_layers': parsed_args.open_layers,
'start_eval': parsed_args.start_eval,
'eval_freq': parsed_args.eval_freq,
'test_only': parsed_args.evaluate,
'print_freq': parsed_args.print_freq,
'dist_metric': parsed_args.dist_metric,
'normalize_feature': parsed_args.normalize_feature,
'visrank': parsed_args.visrank,
'visrank_topk': parsed_args.visrank_topk,
'use_metric_cuhk03': parsed_args.use_metric_cuhk03,
'ranks': parsed_args.ranks,
'rerank': parsed_args.rerank
}