69 lines
2.6 KiB
Python
69 lines
2.6 KiB
Python
from __future__ import print_function
|
|
|
|
import sys
|
|
import os.path as osp
|
|
import timeit
|
|
import numpy as np
|
|
|
|
sys.path.insert(0, osp.dirname(osp.abspath(__file__)) + '/../../..')
|
|
from torchreid import metrics
|
|
|
|
"""
|
|
Test the speed of cython-based evaluation code. The speed improvements
|
|
can be much bigger when using the real reid data, which contains a larger
|
|
amount of query and gallery images.
|
|
|
|
Note: you might encounter the following error:
|
|
'AssertionError: Error: all query identities do not appear in gallery'.
|
|
This is normal because the inputs are random numbers. Just try again.
|
|
"""
|
|
|
|
print('*** Compare running time ***')
|
|
|
|
setup = '''
|
|
import sys
|
|
import os.path as osp
|
|
import numpy as np
|
|
sys.path.insert(0, osp.dirname(osp.abspath(__file__)) + '/../../..')
|
|
from torchreid import metrics
|
|
num_q = 30
|
|
num_g = 300
|
|
max_rank = 5
|
|
distmat = np.random.rand(num_q, num_g) * 20
|
|
q_pids = np.random.randint(0, num_q, size=num_q)
|
|
g_pids = np.random.randint(0, num_g, size=num_g)
|
|
q_camids = np.random.randint(0, 5, size=num_q)
|
|
g_camids = np.random.randint(0, 5, size=num_g)
|
|
'''
|
|
|
|
print('=> Using market1501\'s metric')
|
|
pytime = timeit.timeit('metrics.evaluate_rank(distmat, q_pids, g_pids, q_camids, g_camids, max_rank, use_cython=False)', setup=setup, number=20)
|
|
cytime = timeit.timeit('metrics.evaluate_rank(distmat, q_pids, g_pids, q_camids, g_camids, max_rank, use_cython=True)', setup=setup, number=20)
|
|
print('Python time: {} s'.format(pytime))
|
|
print('Cython time: {} s'.format(cytime))
|
|
print('Cython is {} times faster than python\n'.format(pytime / cytime))
|
|
|
|
print('=> Using cuhk03\'s metric')
|
|
pytime = timeit.timeit('metrics.evaluate_rank(distmat, q_pids, g_pids, q_camids, g_camids, max_rank, use_metric_cuhk03=True, use_cython=False)', setup=setup, number=20)
|
|
cytime = timeit.timeit('metrics.evaluate_rank(distmat, q_pids, g_pids, q_camids, g_camids, max_rank, use_metric_cuhk03=True, use_cython=True)', setup=setup, number=20)
|
|
print('Python time: {} s'.format(pytime))
|
|
print('Cython time: {} s'.format(cytime))
|
|
print('Cython is {} times faster than python\n'.format(pytime / cytime))
|
|
|
|
"""
|
|
print("=> Check precision")
|
|
|
|
num_q = 30
|
|
num_g = 300
|
|
max_rank = 5
|
|
distmat = np.random.rand(num_q, num_g) * 20
|
|
q_pids = np.random.randint(0, num_q, size=num_q)
|
|
g_pids = np.random.randint(0, num_g, size=num_g)
|
|
q_camids = np.random.randint(0, 5, size=num_q)
|
|
g_camids = np.random.randint(0, 5, size=num_g)
|
|
|
|
cmc, mAP = evaluate(distmat, q_pids, g_pids, q_camids, g_camids, max_rank, use_cython=False)
|
|
print("Python:\nmAP = {} \ncmc = {}\n".format(mAP, cmc))
|
|
cmc, mAP = evaluate(distmat, q_pids, g_pids, q_camids, g_camids, max_rank, use_cython=True)
|
|
print("Cython:\nmAP = {} \ncmc = {}\n".format(mAP, cmc))
|
|
""" |