281 lines
10 KiB
Python
281 lines
10 KiB
Python
from __future__ import print_function
|
|
from __future__ import division
|
|
|
|
import os
|
|
import sys
|
|
import time
|
|
import datetime
|
|
import os.path as osp
|
|
import numpy as np
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.backends.cudnn as cudnn
|
|
from torch.optim import lr_scheduler
|
|
|
|
from args import argument_parser, image_dataset_kwargs, optimizer_kwargs
|
|
from torchreid.data_manager import ImageDataManager
|
|
from torchreid import models
|
|
from torchreid.losses import CrossEntropyLoss, TripletLoss, DeepSupervision
|
|
from torchreid.utils.iotools import save_checkpoint, check_isfile
|
|
from torchreid.utils.avgmeter import AverageMeter
|
|
from torchreid.utils.loggers import Logger, RankLogger
|
|
from torchreid.utils.torchtools import count_num_param, open_all_layers, open_specified_layers
|
|
from torchreid.utils.reidtools import visualize_ranked_results
|
|
from torchreid.eval_metrics import evaluate
|
|
from torchreid.samplers import RandomIdentitySampler
|
|
from torchreid.optimizers import init_optimizer
|
|
|
|
|
|
# global variables
|
|
parser = argument_parser()
|
|
args = parser.parse_args()
|
|
|
|
|
|
def main():
|
|
global args
|
|
|
|
torch.manual_seed(args.seed)
|
|
if not args.use_avai_gpus: os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_devices
|
|
use_gpu = torch.cuda.is_available()
|
|
if args.use_cpu: use_gpu = False
|
|
log_name = 'log_test.txt' if args.evaluate else 'log_train.txt'
|
|
sys.stdout = Logger(osp.join(args.save_dir, log_name))
|
|
print("==========\nArgs:{}\n==========".format(args))
|
|
|
|
if use_gpu:
|
|
print("Currently using GPU {}".format(args.gpu_devices))
|
|
cudnn.benchmark = True
|
|
torch.cuda.manual_seed_all(args.seed)
|
|
else:
|
|
print("Currently using CPU, however, GPU is highly recommended")
|
|
|
|
print("Initializing image data manager")
|
|
dm = ImageDataManager(use_gpu, **image_dataset_kwargs(args))
|
|
trainloader, testloader_dict = dm.return_dataloaders()
|
|
|
|
print("Initializing model: {}".format(args.arch))
|
|
model = models.init_model(name=args.arch, num_classes=dm.num_train_pids, loss={'xent', 'htri'})
|
|
print("Model size: {:.3f} M".format(count_num_param(model)))
|
|
|
|
criterion_xent = CrossEntropyLoss(num_classes=dm.num_train_pids, use_gpu=use_gpu, label_smooth=args.label_smooth)
|
|
criterion_htri = TripletLoss(margin=args.margin)
|
|
|
|
optimizer = init_optimizer(model.parameters(), **optimizer_kwargs(args))
|
|
scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=args.stepsize, gamma=args.gamma)
|
|
|
|
if args.load_weights and check_isfile(args.load_weights):
|
|
# load pretrained weights but ignore layers that don't match in size
|
|
checkpoint = torch.load(args.load_weights)
|
|
pretrain_dict = checkpoint['state_dict']
|
|
model_dict = model.state_dict()
|
|
pretrain_dict = {k: v for k, v in pretrain_dict.items() if k in model_dict and model_dict[k].size() == v.size()}
|
|
model_dict.update(pretrain_dict)
|
|
model.load_state_dict(model_dict)
|
|
print("Loaded pretrained weights from '{}'".format(args.load_weights))
|
|
|
|
if args.resume and check_isfile(args.resume):
|
|
checkpoint = torch.load(args.resume)
|
|
model.load_state_dict(checkpoint['state_dict'])
|
|
args.start_epoch = checkpoint['epoch'] + 1
|
|
print("Loaded checkpoint from '{}'".format(args.resume))
|
|
print("- start_epoch: {}\n- rank1: {}".format(args.start_epoch, checkpoint['rank1']))
|
|
|
|
if use_gpu:
|
|
model = nn.DataParallel(model).cuda()
|
|
|
|
if args.evaluate:
|
|
print("Evaluate only")
|
|
|
|
for name in args.target_names:
|
|
print("Evaluating {} ...".format(name))
|
|
queryloader = testloader_dict[name]['query']
|
|
galleryloader = testloader_dict[name]['gallery']
|
|
distmat = test(model, queryloader, galleryloader, use_gpu, return_distmat=True)
|
|
|
|
if args.visualize_ranks:
|
|
visualize_ranked_results(
|
|
distmat, dm.return_testdataset_by_name(name),
|
|
save_dir=osp.join(args.save_dir, 'ranked_results', name),
|
|
topk=20
|
|
)
|
|
return
|
|
|
|
start_time = time.time()
|
|
ranklogger = RankLogger(args.source_names, args.target_names)
|
|
train_time = 0
|
|
print("=> Start training")
|
|
|
|
if args.fixbase_epoch > 0:
|
|
print("Train {} for {} epochs while keeping other layers frozen".format(args.open_layers, args.fixbase_epoch))
|
|
initial_optim_state = optimizer.state_dict()
|
|
|
|
for epoch in range(args.fixbase_epoch):
|
|
start_train_time = time.time()
|
|
train(epoch, model, criterion_xent, criterion_htri, optimizer, trainloader, use_gpu, fixbase=True)
|
|
train_time += round(time.time() - start_train_time)
|
|
|
|
print("Done. All layers are open to train for {} epochs".format(args.max_epoch))
|
|
optimizer.load_state_dict(initial_optim_state)
|
|
|
|
for epoch in range(args.start_epoch, args.max_epoch):
|
|
start_train_time = time.time()
|
|
train(epoch, model, criterion_xent, criterion_htri, optimizer, trainloader, use_gpu)
|
|
train_time += round(time.time() - start_train_time)
|
|
|
|
scheduler.step()
|
|
|
|
if (epoch + 1) > args.start_eval and args.eval_freq > 0 and (epoch + 1) % args.eval_freq == 0 or (epoch + 1) == args.max_epoch:
|
|
print("=> Test")
|
|
|
|
for name in args.target_names:
|
|
print("Evaluating {} ...".format(name))
|
|
queryloader = testloader_dict[name]['query']
|
|
galleryloader = testloader_dict[name]['gallery']
|
|
rank1 = test(model, queryloader, galleryloader, use_gpu)
|
|
ranklogger.write(name, epoch + 1, rank1)
|
|
|
|
if use_gpu:
|
|
state_dict = model.module.state_dict()
|
|
else:
|
|
state_dict = model.state_dict()
|
|
|
|
save_checkpoint({
|
|
'state_dict': state_dict,
|
|
'rank1': rank1,
|
|
'epoch': epoch,
|
|
}, False, osp.join(args.save_dir, 'checkpoint_ep' + str(epoch + 1) + '.pth.tar'))
|
|
|
|
elapsed = round(time.time() - start_time)
|
|
elapsed = str(datetime.timedelta(seconds=elapsed))
|
|
train_time = str(datetime.timedelta(seconds=train_time))
|
|
print("Finished. Total elapsed time (h:m:s): {}. Training time (h:m:s): {}.".format(elapsed, train_time))
|
|
ranklogger.show_summary()
|
|
|
|
|
|
def train(epoch, model, criterion_xent, criterion_htri, optimizer, trainloader, use_gpu, fixbase=False):
|
|
losses = AverageMeter()
|
|
batch_time = AverageMeter()
|
|
data_time = AverageMeter()
|
|
|
|
model.train()
|
|
|
|
if fixbase or args.fixbase:
|
|
open_specified_layers(model, args.open_layers)
|
|
else:
|
|
open_all_layers(model)
|
|
|
|
end = time.time()
|
|
for batch_idx, (imgs, pids, _, _) in enumerate(trainloader):
|
|
data_time.update(time.time() - end)
|
|
|
|
if use_gpu:
|
|
imgs, pids = imgs.cuda(), pids.cuda()
|
|
|
|
outputs, features = model(imgs)
|
|
if args.htri_only:
|
|
if isinstance(features, (tuple, list)):
|
|
loss = DeepSupervision(criterion_htri, features, pids)
|
|
else:
|
|
loss = criterion_htri(features, pids)
|
|
else:
|
|
if isinstance(outputs, (tuple, list)):
|
|
xent_loss = DeepSupervision(criterion_xent, outputs, pids)
|
|
else:
|
|
xent_loss = criterion_xent(outputs, pids)
|
|
|
|
if isinstance(features, (tuple, list)):
|
|
htri_loss = DeepSupervision(criterion_htri, features, pids)
|
|
else:
|
|
htri_loss = criterion_htri(features, pids)
|
|
|
|
loss = args.lambda_xent * xent_loss + args.lambda_htri * htri_loss
|
|
optimizer.zero_grad()
|
|
loss.backward()
|
|
optimizer.step()
|
|
|
|
batch_time.update(time.time() - end)
|
|
|
|
losses.update(loss.item(), pids.size(0))
|
|
|
|
if (batch_idx + 1) % args.print_freq == 0:
|
|
print('Epoch: [{0}][{1}/{2}]\t'
|
|
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
|
|
'Data {data_time.val:.4f} ({data_time.avg:.4f})\t'
|
|
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'.format(
|
|
epoch + 1, batch_idx + 1, len(trainloader), batch_time=batch_time,
|
|
data_time=data_time, loss=losses))
|
|
|
|
end = time.time()
|
|
|
|
|
|
def test(model, queryloader, galleryloader, use_gpu, ranks=[1, 5, 10, 20], return_distmat=False):
|
|
batch_time = AverageMeter()
|
|
|
|
model.eval()
|
|
|
|
with torch.no_grad():
|
|
qf, q_pids, q_camids = [], [], []
|
|
for batch_idx, (imgs, pids, camids, _) in enumerate(queryloader):
|
|
if use_gpu:
|
|
imgs = imgs.cuda()
|
|
|
|
end = time.time()
|
|
features = model(imgs)
|
|
batch_time.update(time.time() - end)
|
|
|
|
features = features.data.cpu()
|
|
qf.append(features)
|
|
q_pids.extend(pids)
|
|
q_camids.extend(camids)
|
|
qf = torch.cat(qf, 0)
|
|
q_pids = np.asarray(q_pids)
|
|
q_camids = np.asarray(q_camids)
|
|
|
|
print("Extracted features for query set, obtained {}-by-{} matrix".format(qf.size(0), qf.size(1)))
|
|
|
|
gf, g_pids, g_camids = [], [], []
|
|
for batch_idx, (imgs, pids, camids, _) in enumerate(galleryloader):
|
|
if use_gpu:
|
|
imgs = imgs.cuda()
|
|
|
|
end = time.time()
|
|
features = model(imgs)
|
|
batch_time.update(time.time() - end)
|
|
|
|
features = features.data.cpu()
|
|
gf.append(features)
|
|
g_pids.extend(pids)
|
|
g_camids.extend(camids)
|
|
gf = torch.cat(gf, 0)
|
|
g_pids = np.asarray(g_pids)
|
|
g_camids = np.asarray(g_camids)
|
|
|
|
print("Extracted features for gallery set, obtained {}-by-{} matrix".format(gf.size(0), gf.size(1)))
|
|
|
|
print("=> BatchTime(s)/BatchSize(img): {:.3f}/{}".format(batch_time.avg, args.test_batch_size))
|
|
|
|
m, n = qf.size(0), gf.size(0)
|
|
distmat = torch.pow(qf, 2).sum(dim=1, keepdim=True).expand(m, n) + \
|
|
torch.pow(gf, 2).sum(dim=1, keepdim=True).expand(n, m).t()
|
|
distmat.addmm_(1, -2, qf, gf.t())
|
|
distmat = distmat.numpy()
|
|
|
|
print("Computing CMC and mAP")
|
|
cmc, mAP = evaluate(distmat, q_pids, g_pids, q_camids, g_camids, use_metric_cuhk03=args.use_metric_cuhk03)
|
|
|
|
print("Results ----------")
|
|
print("mAP: {:.1%}".format(mAP))
|
|
print("CMC curve")
|
|
for r in ranks:
|
|
print("Rank-{:<3}: {:.1%}".format(r, cmc[r-1]))
|
|
print("------------------")
|
|
|
|
if return_distmat:
|
|
return distmat
|
|
return cmc[0]
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|