deep-person-reid/torchreid/datasets/msmt17.py

107 lines
3.5 KiB
Python

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import glob
import re
import sys
import urllib
import tarfile
import zipfile
import os.path as osp
from scipy.io import loadmat
import numpy as np
import h5py
from scipy.misc import imsave
from .bases import BaseImageDataset
# To adapt to different versions
# Log:
# 22.01.2019: v1 and v2 only differ in dir names
TRAIN_DIR_KEY = 'train_dir'
TEST_DIR_KEY = 'test_dir'
VERSION_DICT = {
'MSMT17_V1': {
TRAIN_DIR_KEY: 'train',
TEST_DIR_KEY: 'test',
},
'MSMT17_V2': {
TRAIN_DIR_KEY: 'mask_train_v2',
TEST_DIR_KEY: 'mask_test_v2',
}
}
class MSMT17(BaseImageDataset):
"""MSMT17
Reference:
Wei et al. Person Transfer GAN to Bridge Domain Gap for Person Re-Identification. CVPR 2018.
URL: http://www.pkuvmc.com/publications/msmt17.html
Dataset statistics:
# identities: 4101
# images: 32621 (train) + 11659 (query) + 82161 (gallery)
# cameras: 15
"""
dataset_dir = 'msmt17'
def __init__(self, root='data', verbose=True, **kwargs):
super(MSMT17, self).__init__(root)
self.dataset_dir = osp.join(self.root, self.dataset_dir)
has_main_dir = False
for main_dir in VERSION_DICT:
if osp.exists(osp.join(self.dataset_dir, main_dir)):
train_dir = VERSION_DICT[main_dir][TRAIN_DIR_KEY]
test_dir = VERSION_DICT[main_dir][TEST_DIR_KEY]
has_main_dir = True
break
assert has_main_dir, 'Dataset folder not found'
self.train_dir = osp.join(self.dataset_dir, main_dir, train_dir)
self.test_dir = osp.join(self.dataset_dir, main_dir, test_dir)
self.list_train_path = osp.join(self.dataset_dir, main_dir, 'list_train.txt')
self.list_val_path = osp.join(self.dataset_dir, main_dir, 'list_val.txt')
self.list_query_path = osp.join(self.dataset_dir, main_dir, 'list_query.txt')
self.list_gallery_path = osp.join(self.dataset_dir, main_dir, 'list_gallery.txt')
required_files = [
self.dataset_dir,
self.train_dir,
self.test_dir
]
self.check_before_run(required_files)
train = self.process_dir(self.train_dir, self.list_train_path)
val = self.process_dir(self.train_dir, self.list_val_path)
query = self.process_dir(self.test_dir, self.list_query_path)
gallery = self.process_dir(self.test_dir, self.list_gallery_path)
# To fairly compare with published methods, don't use val images for training
#train += val
#num_train_imgs += num_val_imgs
self.init_attributes(train, query, gallery)
if verbose:
self.print_dataset_statistics(train, query, gallery)
def process_dir(self, dir_path, list_path):
with open(list_path, 'r') as txt:
lines = txt.readlines()
dataset = []
pid_container = set()
for img_idx, img_info in enumerate(lines):
img_path, pid = img_info.split(' ')
pid = int(pid) # no need to relabel
camid = int(img_path.split('_')[2]) - 1 # index starts from 0
img_path = osp.join(dir_path, img_path)
dataset.append((img_path, pid, camid))
pid_container.add(pid)
num_pids = len(pid_container)
for idx, pid in enumerate(pid_container):
if idx != pid:
raise RuntimeError('pid does not start from 0 and increment by 1')
return dataset