deep-person-reid/torchreid/engine/engine.py

333 lines
14 KiB
Python

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import os
import os.path as osp
import time
import datetime
import numpy as np
import torch
import torch.nn as nn
from torch.nn import functional as F
import torchreid
from torchreid.utils import AverageMeter, visualize_ranked_results, save_checkpoint, re_ranking
from torchreid.losses import DeepSupervision
from torchreid import metrics
class Engine(object):
r"""A generic base Engine class for both image- and video-reid.
Args:
datamanager (DataManager): an instance of ``torchreid.data.ImageDataManager``
or ``torchreid.data.VideoDataManager``.
model (nn.Module): model instance.
optimizer (Optimizer): an Optimizer.
scheduler (LRScheduler, optional): if None, no learning rate decay will be performed.
use_cpu (bool, optional): use cpu. Default is False.
"""
def __init__(self, datamanager, model, optimizer=None, scheduler=None, use_cpu=False):
self.datamanager = datamanager
self.model = model
self.optimizer = optimizer
self.scheduler = scheduler
self.use_gpu = (torch.cuda.is_available() and not use_cpu)
# check attributes
if not isinstance(self.model, nn.Module):
raise TypeError('model must be an instance of nn.Module')
def run(self, save_dir='log', max_epoch=0, start_epoch=0, fixbase_epoch=0, open_layers=None,
start_eval=0, eval_freq=-1, test_only=False, print_freq=10,
dist_metric='euclidean', normalize_feature=False, visrank=False, visrank_topk=20,
use_metric_cuhk03=False, ranks=[1, 5, 10, 20], rerank=False):
r"""A unified pipeline for training and evaluating a model.
Args:
save_dir (str): directory to save model.
max_epoch (int): maximum epoch.
start_epoch (int, optional): starting epoch. Default is 0.
fixbase_epoch (int, optional): number of epochs to train ``open_layers`` (new layers)
while keeping base layers frozen. Default is 0. ``fixbase_epoch`` is not counted
in ``max_epoch``.
open_layers (str or list, optional): layers (attribute names) open for training.
start_eval (int, optional): from which epoch to start evaluation. Default is 0.
eval_freq (int, optional): evaluation frequency. Default is -1 (meaning evaluation
is only performed at the end of training).
test_only (bool, optional): if True, only runs evaluation on test datasets.
Default is False.
print_freq (int, optional): print_frequency. Default is 10.
dist_metric (str, optional): distance metric used to compute distance matrix
between query and gallery. Default is "euclidean".
normalize_feature (bool, optional): performs L2 normalization on feature vectors before
computing feature distance. Default is False.
visrank (bool, optional): visualizes ranked results. Default is False. Visualization
will be performed every test time, so it is recommended to enable ``visrank`` when
``test_only`` is True. The ranked images will be saved to
"save_dir/ranks-epoch/dataset_name", e.g. "save_dir/ranks-60/market1501".
visrank_topk (int, optional): top-k ranked images to be visualized. Default is 20.
use_metric_cuhk03 (bool, optional): use single-gallery-shot setting for cuhk03.
Default is False. This should be enabled when using cuhk03 classic split.
ranks (list, optional): cmc ranks to be computed. Default is [1, 5, 10, 20].
rerank (bool, optional): uses person re-ranking (by Zhong et al. CVPR'17).
Default is False. This is only enabled when test_only=True.
"""
trainloader, testloader = self.datamanager.return_dataloaders()
if test_only:
self.test(
0,
testloader,
dist_metric=dist_metric,
normalize_feature=normalize_feature,
visrank=visrank,
visrank_topk=visrank_topk,
save_dir=save_dir,
use_metric_cuhk03=use_metric_cuhk03,
ranks=ranks,
rerank=rerank
)
return
time_start = time.time()
print('=> Start training')
if fixbase_epoch>0 and (open_layers is not None):
print('Pretrain open layers ({}) for {} epochs'.format(open_layers, fixbase_epoch))
for epoch in range(fixbase_epoch):
self.train(epoch, trainloader, fixbase=True, open_layers=open_layers,
print_freq=print_freq)
print('Done. From now on all layers are open to train for {} epochs'.format(max_epoch))
for epoch in range(start_epoch, max_epoch):
self.train(epoch, trainloader, print_freq=print_freq)
if (epoch+1)>start_eval and eval_freq>0 and (epoch+1)%eval_freq==0 and (epoch+1)!=max_epoch:
rank1 = self.test(
epoch,
testloader,
dist_metric=dist_metric,
normalize_feature=normalize_feature,
visrank=visrank,
visrank_topk=visrank_topk,
save_dir=save_dir,
use_metric_cuhk03=use_metric_cuhk03,
ranks=ranks
)
self._save_checkpoint(epoch, rank1, save_dir)
if max_epoch > 0:
print('=> Final test')
rank1 = self.test(
epoch,
testloader,
dist_metric=dist_metric,
normalize_feature=normalize_feature,
visrank=visrank,
visrank_topk=visrank_topk,
save_dir=save_dir,
use_metric_cuhk03=use_metric_cuhk03,
ranks=ranks
)
self._save_checkpoint(epoch, rank1, save_dir)
elapsed = round(time.time() - time_start)
elapsed = str(datetime.timedelta(seconds=elapsed))
print('Elapsed {}'.format(elapsed))
def train(self):
r"""Performs training on source datasets for one epoch.
This will be called every epoch in ``run()``, e.g.
.. code-block:: python
for epoch in range(start_epoch, max_epoch):
self.train(some_arguments)
.. note::
This needs to be implemented in subclasses.
"""
raise NotImplementedError
def test(self, epoch, testloader, dist_metric='euclidean', normalize_feature=False,
visrank=False, visrank_topk=20, save_dir='', use_metric_cuhk03=False,
ranks=[1, 5, 10, 20], rerank=False):
r"""Tests model on target datasets.
.. note::
This function has been called in ``run()`` when necessary.
.. note::
The test pipeline implemented in this function suits both image- and
video-reid. In general, a subclass of Engine only needs to re-implement
``_extract_features()`` and ``_parse_data_for_eval()`` when necessary,
but not a must. Please refer to the source code for more details.
Args:
epoch (int): current epoch.
testloader (dict): dictionary containing
{dataset_name: 'query': queryloader, 'gallery': galleryloader}.
dist_metric (str, optional): distance metric used to compute distance matrix
between query and gallery. Default is "euclidean".
normalize_feature (bool, optional): performs L2 normalization on feature vectors before
computing feature distance. Default is False.
visrank (bool, optional): visualizes ranked results. Default is False. Visualization
will be performed every test time, so it is recommended to enable ``visrank`` when
``test_only`` is True. The ranked images will be saved to
"save_dir/ranks-epoch/dataset_name", e.g. "save_dir/ranks-60/market1501".
visrank_topk (int, optional): top-k ranked images to be visualized. Default is 20.
save_dir (str): directory to save visualized results if ``visrank`` is True.
use_metric_cuhk03 (bool, optional): use single-gallery-shot setting for cuhk03.
Default is False. This should be enabled when using cuhk03 classic split.
ranks (list, optional): cmc ranks to be computed. Default is [1, 5, 10, 20].
rerank (bool, optional): uses person re-ranking (by Zhong et al. CVPR'17).
Default is False.
"""
targets = list(testloader.keys())
for name in targets:
domain = 'source' if name in self.datamanager.sources else 'target'
print('\n##### Evaluating {} ({}) #####'.format(name, domain))
queryloader = testloader[name]['query']
galleryloader = testloader[name]['gallery']
rank1 = self._evaluate(
epoch,
dataset_name=name,
queryloader=queryloader,
galleryloader=galleryloader,
dist_metric=dist_metric,
normalize_feature=normalize_feature,
visrank=visrank,
visrank_topk=visrank_topk,
save_dir=save_dir,
use_metric_cuhk03=use_metric_cuhk03,
ranks=ranks,
rerank=rerank
)
return rank1
@torch.no_grad()
def _evaluate(self, epoch, dataset_name='', queryloader=None, galleryloader=None,
dist_metric='euclidean', normalize_feature=False, visrank=False,
visrank_topk=20, save_dir='', use_metric_cuhk03=False, ranks=[1, 5, 10, 20],
rerank=False):
batch_time = AverageMeter()
self.model.eval()
print('Extracting features from query set ...')
qf, q_pids, q_camids = [], [], [] # query features, query person IDs and query camera IDs
for batch_idx, data in enumerate(queryloader):
imgs, pids, camids = self._parse_data_for_eval(data)
if self.use_gpu:
imgs = imgs.cuda()
end = time.time()
features = self._extract_features(imgs)
batch_time.update(time.time() - end)
features = features.data.cpu()
qf.append(features)
q_pids.extend(pids)
q_camids.extend(camids)
qf = torch.cat(qf, 0)
q_pids = np.asarray(q_pids)
q_camids = np.asarray(q_camids)
print('Done, obtained {}-by-{} matrix'.format(qf.size(0), qf.size(1)))
print('Extracting features from gallery set ...')
gf, g_pids, g_camids = [], [], [] # gallery features, gallery person IDs and gallery camera IDs
end = time.time()
for batch_idx, data in enumerate(galleryloader):
imgs, pids, camids = self._parse_data_for_eval(data)
if self.use_gpu:
imgs = imgs.cuda()
end = time.time()
features = self._extract_features(imgs)
batch_time.update(time.time() - end)
features = features.data.cpu()
gf.append(features)
g_pids.extend(pids)
g_camids.extend(camids)
gf = torch.cat(gf, 0)
g_pids = np.asarray(g_pids)
g_camids = np.asarray(g_camids)
print('Done, obtained {}-by-{} matrix'.format(gf.size(0), gf.size(1)))
print('Speed: {:.4f} sec/batch'.format(batch_time.avg))
if normalize_feature:
qf = F.normalize(qf, p=2, dim=1)
gf = F.normalize(gf, p=2, dim=1)
distmat = metrics.compute_distance_matrix(qf, gf, dist_metric)
distmat = distmat.numpy()
if rerank:
print('Applying person re-ranking ...')
distmat_qq = metrics.compute_distance_matrix(qf, qf, dist_metric)
distmat_gg = metrics.compute_distance_matrix(gf, gf, dist_metric)
distmat = re_ranking(distmat, distmat_qq, distmat_gg)
print('Computing CMC and mAP ...')
cmc, mAP = metrics.evaluate_rank(
distmat,
q_pids,
g_pids,
q_camids,
g_camids,
use_metric_cuhk03=use_metric_cuhk03
)
print('** Results **')
print('mAP: {:.1%}'.format(mAP))
print('CMC curve')
for r in ranks:
print('Rank-{:<3}: {:.1%}'.format(r, cmc[r-1]))
if visrank:
visualize_ranked_results(
distmat,
self.datamanager.return_testdataset_by_name(dataset_name),
save_dir=osp.join(save_dir, 'visrank-'+str(epoch+1), dataset_name),
topk=visrank_topk
)
return cmc[0]
def _compute_loss(self, criterion, outputs, targets):
if isinstance(outputs, (tuple, list)):
loss = DeepSupervision(criterion, outputs, targets)
else:
loss = criterion(outputs, targets)
return loss
def _extract_features(self, input):
self.model.eval()
return self.model(input)
def _parse_data_for_train(self, data):
imgs = data[0]
pids = data[1]
return imgs, pids
def _parse_data_for_eval(self, data):
imgs = data[0]
pids = data[1]
camids = data[2]
return imgs, pids, camids
def _save_checkpoint(self, epoch, rank1, save_dir, is_best=False):
save_checkpoint({
'state_dict': self.model.state_dict(),
'epoch': epoch + 1,
'rank1': rank1,
'optimizer': self.optimizer.state_dict(),
}, save_dir, is_best=is_best)