deep-person-reid/torchreid/datasets/cuhk01.py

149 lines
5.5 KiB
Python

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import glob
import re
import sys
import urllib
import tarfile
import zipfile
import os.path as osp
from scipy.io import loadmat
import numpy as np
import h5py
from scipy.misc import imsave
from torchreid.utils.iotools import mkdir_if_missing, write_json, read_json
from .bases import BaseImageDataset
class CUHK01(BaseImageDataset):
"""
CUHK01
Reference:
Li et al. Human Reidentification with Transferred Metric Learning. ACCV 2012.
URL: http://www.ee.cuhk.edu.hk/~xgwang/CUHK_identification.html
Dataset statistics:
# identities: 971
# images: 3884
# cameras: 4
"""
dataset_dir = 'cuhk01'
def __init__(self, root='data', split_id=0, verbose=True, **kwargs):
super(CUHK01, self).__init__(root)
self.dataset_dir = osp.join(self.root, self.dataset_dir)
self.zip_path = osp.join(self.dataset_dir, 'CUHK01.zip')
self.campus_dir = osp.join(self.dataset_dir, 'campus')
self.split_path = osp.join(self.dataset_dir, 'splits.json')
self.extract_file()
self.check_before_run()
self.prepare_split()
splits = read_json(self.split_path)
if split_id >= len(splits):
raise ValueError('split_id exceeds range, received {}, but expected between 0 and {}'.format(split_id, len(splits)-1))
split = splits[split_id]
train = split['train']
query = split['query']
gallery = split['gallery']
train = [tuple(item) for item in train]
query = [tuple(item) for item in query]
gallery = [tuple(item) for item in gallery]
if verbose:
print('=> CUHK01 loaded')
self.print_dataset_statistics(train, query, gallery)
self.train = train
self.query = query
self.gallery = gallery
self.num_train_pids, self.num_train_imgs, self.num_train_cams = self.get_imagedata_info(self.train)
self.num_query_pids, self.num_query_imgs, self.num_query_cams = self.get_imagedata_info(self.query)
self.num_gallery_pids, self.num_gallery_imgs, self.num_gallery_cams = self.get_imagedata_info(self.gallery)
def extract_file(self):
if not osp.exists(self.campus_dir):
print('Extracting files')
zip_ref = zipfile.ZipFile(self.zip_path, 'r')
zip_ref.extractall(self.dataset_dir)
zip_ref.close()
print('Files extracted')
def check_before_run(self):
"""Check if all files are available before going deeper"""
if not osp.exists(self.dataset_dir):
raise RuntimeError('"{}" is not available'.format(self.dataset_dir))
if not osp.exists(self.campus_dir):
raise RuntimeError('"{}" is not available'.format(self.campus_dir))
def prepare_split(self):
"""
Image name format: 0001001.png, where first four digits represent identity
and last four digits represent cameras. Camera 1&2 are considered the same
view and camera 3&4 are considered the same view.
"""
if not osp.exists(self.split_path):
print('Creating 10 random splits of train ids and test ids')
img_paths = sorted(glob.glob(osp.join(self.campus_dir, '*.png')))
img_list = []
pid_container = set()
for img_path in img_paths:
img_name = osp.basename(img_path)
pid = int(img_name[:4]) - 1
camid = (int(img_name[4:7]) - 1) // 2 # result is either 0 or 1
img_list.append((img_path, pid, camid))
pid_container.add(pid)
num_pids = len(pid_container)
num_train_pids = num_pids // 2
splits = []
for _ in range(10):
order = np.arange(num_pids)
np.random.shuffle(order)
train_idxs = order[:num_train_pids]
train_idxs = np.sort(train_idxs)
idx2label = {idx: label for label, idx in enumerate(train_idxs)}
train, test_a, test_b = [], [], []
for img_path, pid, camid in img_list:
if pid in train_idxs:
train.append((img_path, idx2label[pid], camid))
else:
if camid == 0:
test_a.append((img_path, pid, camid))
else:
test_b.append((img_path, pid, camid))
# use cameraA as query and cameraB as gallery
split = {'train': train, 'query': test_a, 'gallery': test_b,
'num_train_pids': num_train_pids,
'num_query_pids': num_pids - num_train_pids,
'num_gallery_pids': num_pids - num_train_pids,
}
splits.append(split)
# use cameraB as query and cameraA as gallery
split = {'train': train, 'query': test_b, 'gallery': test_a,
'num_train_pids': num_train_pids,
'num_query_pids': num_pids - num_train_pids,
'num_gallery_pids': num_pids - num_train_pids,
}
splits.append(split)
print('Totally {} splits are created'.format(len(splits)))
write_json(splits, self.split_path)
print('Split file saved to {}'.format(self.split_path))
print('Splits created')