deep-person-reid/_modules/torchreid/losses/cross_entropy_loss.html

259 lines
12 KiB
HTML

<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>torchreid.losses.cross_entropy_loss &mdash; torchreid 0.8.1 documentation</title>
<script type="text/javascript" src="../../../_static/js/modernizr.min.js"></script>
<script type="text/javascript" id="documentation_options" data-url_root="../../../" src="../../../_static/documentation_options.js"></script>
<script type="text/javascript" src="../../../_static/jquery.js"></script>
<script type="text/javascript" src="../../../_static/underscore.js"></script>
<script type="text/javascript" src="../../../_static/doctools.js"></script>
<script type="text/javascript" src="../../../_static/language_data.js"></script>
<script async="async" type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-AMS-MML_HTMLorMML"></script>
<script type="text/javascript" src="../../../_static/js/theme.js"></script>
<link rel="stylesheet" href="../../../_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="../../../_static/pygments.css" type="text/css" />
<link rel="index" title="Index" href="../../../genindex.html" />
<link rel="search" title="Search" href="../../../search.html" />
</head>
<body class="wy-body-for-nav">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
<div class="wy-side-scroll">
<div class="wy-side-nav-search" >
<a href="../../../index.html" class="icon icon-home"> torchreid
</a>
<div class="version">
0.8.1
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../../../search.html" method="get">
<input type="text" name="q" placeholder="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../../user_guide.html">How-to</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../datasets.html">Datasets</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../evaluation.html">Evaluation</a></li>
</ul>
<p class="caption"><span class="caption-text">Package Reference</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../../pkg/data.html">torchreid.data</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../pkg/engine.html">torchreid.engine</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../pkg/losses.html">torchreid.losses</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../pkg/metrics.html">torchreid.metrics</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../pkg/models.html">torchreid.models</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../pkg/optim.html">torchreid.optim</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../pkg/utils.html">torchreid.utils</a></li>
</ul>
<p class="caption"><span class="caption-text">Resources</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../../AWESOME_REID.html">Awesome-ReID</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../MODEL_ZOO.html">Model Zoo</a></li>
</ul>
</div>
</div>
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
<nav class="wy-nav-top" aria-label="top navigation">
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="../../../index.html">torchreid</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="wy-breadcrumbs">
<li><a href="../../../index.html">Docs</a> &raquo;</li>
<li><a href="../../index.html">Module code</a> &raquo;</li>
<li>torchreid.losses.cross_entropy_loss</li>
<li class="wy-breadcrumbs-aside">
</li>
</ul>
<hr/>
</div>
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<h1>Source code for torchreid.losses.cross_entropy_loss</h1><div class="highlight"><pre>
<span></span><span class="kn">from</span> <span class="nn">__future__</span> <span class="k">import</span> <span class="n">absolute_import</span>
<span class="kn">from</span> <span class="nn">__future__</span> <span class="k">import</span> <span class="n">division</span>
<span class="kn">import</span> <span class="nn">torch</span>
<span class="kn">import</span> <span class="nn">torch.nn</span> <span class="k">as</span> <span class="nn">nn</span>
<div class="viewcode-block" id="CrossEntropyLoss"><a class="viewcode-back" href="../../../pkg/losses.html#torchreid.losses.cross_entropy_loss.CrossEntropyLoss">[docs]</a><span class="k">class</span> <span class="nc">CrossEntropyLoss</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span>
<span class="sa">r</span><span class="sd">&quot;&quot;&quot;Cross entropy loss with label smoothing regularizer.</span>
<span class="sd"> </span>
<span class="sd"> Reference:</span>
<span class="sd"> Szegedy et al. Rethinking the Inception Architecture for Computer Vision. CVPR 2016.</span>
<span class="sd"> With label smoothing, the label :math:`y` for a class is computed by</span>
<span class="sd"> </span>
<span class="sd"> .. math::</span>
<span class="sd"> \begin{equation}</span>
<span class="sd"> (1 - \epsilon) \times y + \frac{\epsilon}{K},</span>
<span class="sd"> \end{equation}</span>
<span class="sd"> where :math:`K` denotes the number of classes and :math:`\epsilon` is a weight. When</span>
<span class="sd"> :math:`\epsilon = 0`, the loss function reduces to the normal cross entropy.</span>
<span class="sd"> </span>
<span class="sd"> Args:</span>
<span class="sd"> num_classes (int): number of classes.</span>
<span class="sd"> epsilon (float, optional): weight. Default is 0.1.</span>
<span class="sd"> use_gpu (bool, optional): whether to use gpu devices. Default is True.</span>
<span class="sd"> label_smooth (bool, optional): whether to apply label smoothing. Default is True.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">num_classes</span><span class="p">,</span> <span class="n">epsilon</span><span class="o">=</span><span class="mf">0.1</span><span class="p">,</span> <span class="n">use_gpu</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">label_smooth</span><span class="o">=</span><span class="kc">True</span><span class="p">):</span>
<span class="nb">super</span><span class="p">(</span><span class="n">CrossEntropyLoss</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_classes</span> <span class="o">=</span> <span class="n">num_classes</span>
<span class="bp">self</span><span class="o">.</span><span class="n">epsilon</span> <span class="o">=</span> <span class="n">epsilon</span> <span class="k">if</span> <span class="n">label_smooth</span> <span class="k">else</span> <span class="mi">0</span>
<span class="bp">self</span><span class="o">.</span><span class="n">use_gpu</span> <span class="o">=</span> <span class="n">use_gpu</span>
<span class="bp">self</span><span class="o">.</span><span class="n">logsoftmax</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">LogSoftmax</span><span class="p">(</span><span class="n">dim</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<div class="viewcode-block" id="CrossEntropyLoss.forward"><a class="viewcode-back" href="../../../pkg/losses.html#torchreid.losses.cross_entropy_loss.CrossEntropyLoss.forward">[docs]</a> <span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">inputs</span><span class="p">,</span> <span class="n">targets</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Args:</span>
<span class="sd"> inputs (torch.Tensor): prediction matrix (before softmax) with</span>
<span class="sd"> shape (batch_size, num_classes).</span>
<span class="sd"> targets (torch.LongTensor): ground truth labels with shape (batch_size).</span>
<span class="sd"> Each position contains the label index.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">log_probs</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">logsoftmax</span><span class="p">(</span><span class="n">inputs</span><span class="p">)</span>
<span class="n">targets</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="n">log_probs</span><span class="o">.</span><span class="n">size</span><span class="p">())</span><span class="o">.</span><span class="n">scatter_</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">targets</span><span class="o">.</span><span class="n">unsqueeze</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">cpu</span><span class="p">(),</span> <span class="mi">1</span><span class="p">)</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">use_gpu</span><span class="p">:</span> <span class="n">targets</span> <span class="o">=</span> <span class="n">targets</span><span class="o">.</span><span class="n">cuda</span><span class="p">()</span>
<span class="n">targets</span> <span class="o">=</span> <span class="p">(</span><span class="mi">1</span> <span class="o">-</span> <span class="bp">self</span><span class="o">.</span><span class="n">epsilon</span><span class="p">)</span> <span class="o">*</span> <span class="n">targets</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">epsilon</span> <span class="o">/</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_classes</span>
<span class="k">return</span> <span class="p">(</span><span class="o">-</span> <span class="n">targets</span> <span class="o">*</span> <span class="n">log_probs</span><span class="p">)</span><span class="o">.</span><span class="n">mean</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span><span class="o">.</span><span class="n">sum</span><span class="p">()</span></div></div>
</pre></div>
</div>
</div>
<footer>
<hr/>
<div role="contentinfo">
<p>
&copy; Copyright 2019, Kaiyang Zhou
</p>
</div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/rtfd/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
</body>
</html>