deep-person-reid/train_vidreid_xent_htri.py

391 lines
16 KiB
Python

from __future__ import print_function
from __future__ import division
import os
import sys
import time
import datetime
import argparse
import os.path as osp
import numpy as np
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
from torch.utils.data import DataLoader
from torch.optim import lr_scheduler
from torchreid import data_manager
from torchreid.dataset_loader import ImageDataset, VideoDataset
from torchreid import transforms as T
from torchreid import models
from torchreid.losses import CrossEntropyLabelSmooth, TripletLoss, DeepSupervision
from torchreid.utils.iotools import save_checkpoint, check_isfile
from torchreid.utils.avgmeter import AverageMeter
from torchreid.utils.logger import Logger
from torchreid.utils.torchtools import count_num_param
from torchreid.utils.reidtools import visualize_ranked_results
from torchreid.eval_metrics import evaluate
from torchreid.samplers import RandomIdentitySampler
from torchreid.optimizers import init_optim
parser = argparse.ArgumentParser(description='Train video model with cross entropy loss')
# Datasets
parser.add_argument('--root', type=str, default='data',
help="root path to data directory")
parser.add_argument('-d', '--dataset', type=str, default='mars',
choices=data_manager.get_names())
parser.add_argument('-j', '--workers', default=4, type=int,
help="number of data loading workers (default: 4)")
parser.add_argument('--height', type=int, default=256,
help="height of an image (default: 256)")
parser.add_argument('--width', type=int, default=128,
help="width of an image (default: 128)")
parser.add_argument('--seq-len', type=int, default=15,
help="number of images to sample in a tracklet")
# Optimization options
parser.add_argument('--optim', type=str, default='adam',
help="optimization algorithm (see optimizers.py)")
parser.add_argument('--max-epoch', default=500, type=int,
help="maximum epochs to run")
parser.add_argument('--start-epoch', default=0, type=int,
help="manual epoch number (useful on restarts)")
parser.add_argument('--train-batch', default=32, type=int,
help="train batch size")
parser.add_argument('--test-batch', default=5, type=int,
help="test batch size (number of tracklets)")
parser.add_argument('--lr', '--learning-rate', default=0.0003, type=float,
help="initial learning rate")
parser.add_argument('--stepsize', default=[300, 400], nargs='+', type=int,
help="stepsize to decay learning rate")
parser.add_argument('--gamma', default=0.1, type=float,
help="learning rate decay")
parser.add_argument('--weight-decay', default=5e-04, type=float,
help="weight decay (default: 5e-04)")
parser.add_argument('--margin', type=float, default=0.3,
help="margin for triplet loss")
parser.add_argument('--num-instances', type=int, default=4,
help="number of instances per identity")
parser.add_argument('--htri-only', action='store_true',
help="only use hard triplet loss (default: Fasle)")
parser.add_argument('--lambda-xent', type=float, default=1,
help="weight to balance cross entropy loss")
parser.add_argument('--lambda-htri', type=float, default=1,
help="weight to balance hard triplet loss")
parser.add_argument('--label-smooth', action='store_true',
help="use label smoothing regularizer in cross entropy loss")
# Architecture
parser.add_argument('-a', '--arch', type=str, default='resnet50', choices=models.get_names())
parser.add_argument('--pool', type=str, default='avg', choices=['avg', 'max'])
# Miscs
parser.add_argument('--print-freq', type=int, default=10,
help="print frequency")
parser.add_argument('--seed', type=int, default=1,
help="manual seed")
parser.add_argument('--resume', type=str, default='', metavar='PATH')
parser.add_argument('--load-weights', type=str, default='',
help="load pretrained weights but ignores layers that don't match in size")
parser.add_argument('--evaluate', action='store_true',
help="evaluation only")
parser.add_argument('--eval-step', type=int, default=-1,
help="run evaluation for every N epochs (set to -1 to test after training)")
parser.add_argument('--start-eval', type=int, default=0,
help="start to evaluate after specific epoch")
parser.add_argument('--save-dir', type=str, default='log')
parser.add_argument('--use-cpu', action='store_true',
help="use cpu")
parser.add_argument('--gpu-devices', default='0', type=str,
help='gpu device ids for CUDA_VISIBLE_DEVICES')
parser.add_argument('--use-avai-gpus', action='store_true',
help="use available gpus instead of specified devices (this is useful when using managed clusters)")
parser.add_argument('--visualize-ranks', action='store_true',
help="visualize ranked results, only available in evaluation mode (default: False)")
# global variables
args = parser.parse_args()
best_rank1 = -np.inf
def main():
global args, best_rank1
torch.manual_seed(args.seed)
if not args.use_avai_gpus: os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_devices
use_gpu = torch.cuda.is_available()
if args.use_cpu: use_gpu = False
if not args.evaluate:
sys.stdout = Logger(osp.join(args.save_dir, 'log_train.txt'))
else:
sys.stdout = Logger(osp.join(args.save_dir, 'log_test.txt'))
print("==========\nArgs:{}\n==========".format(args))
if use_gpu:
print("Currently using GPU {}".format(args.gpu_devices))
cudnn.benchmark = True
torch.cuda.manual_seed_all(args.seed)
else:
print("Currently using CPU (GPU is highly recommended)")
print("Initializing dataset {}".format(args.dataset))
dataset = data_manager.init_vidreid_dataset(root=args.root, name=args.dataset)
transform_train = T.Compose([
T.Random2DTranslation(args.height, args.width),
T.RandomHorizontalFlip(),
T.ToTensor(),
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
transform_test = T.Compose([
T.Resize((args.height, args.width)),
T.ToTensor(),
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
pin_memory = True if use_gpu else False
# decompose tracklets into images for image-based training
new_train = []
for img_paths, pid, camid in dataset.train:
for img_path in img_paths:
new_train.append((img_path, pid, camid))
trainloader = DataLoader(
ImageDataset(new_train, transform=transform_train),
sampler=RandomIdentitySampler(new_train, args.train_batch, args.num_instances),
batch_size=args.train_batch, num_workers=args.workers,
pin_memory=pin_memory, drop_last=True,
)
queryloader = DataLoader(
VideoDataset(dataset.query, seq_len=args.seq_len, sample='evenly', transform=transform_test),
batch_size=args.test_batch, shuffle=False, num_workers=args.workers,
pin_memory=pin_memory, drop_last=False,
)
galleryloader = DataLoader(
VideoDataset(dataset.gallery, seq_len=args.seq_len, sample='evenly', transform=transform_test),
batch_size=args.test_batch, shuffle=False, num_workers=args.workers,
pin_memory=pin_memory, drop_last=False,
)
print("Initializing model: {}".format(args.arch))
model = models.init_model(name=args.arch, num_classes=dataset.num_train_pids, loss={'xent', 'htri'})
print("Model size: {:.3f} M".format(count_num_param(model)))
if args.label_smooth:
criterion_xent = CrossEntropyLabelSmooth(num_classes=dataset.num_train_pids, use_gpu=use_gpu)
else:
criterion_xent = nn.CrossEntropyLoss()
criterion_htri = TripletLoss(margin=args.margin)
optimizer = init_optim(args.optim, model.parameters(), args.lr, args.weight_decay)
scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=args.stepsize, gamma=args.gamma)
if args.load_weights and check_isfile(args.load_weights):
# load pretrained weights but ignore layers that don't match in size
checkpoint = torch.load(args.load_weights)
pretrain_dict = checkpoint['state_dict']
model_dict = model.state_dict()
pretrain_dict = {k: v for k, v in pretrain_dict.items() if k in model_dict and model_dict[k].size() == v.size()}
model_dict.update(pretrain_dict)
model.load_state_dict(model_dict)
print("Loaded pretrained weights from '{}'".format(args.load_weights))
if args.resume and check_isfile(args.resume):
checkpoint = torch.load(args.resume)
model.load_state_dict(checkpoint['state_dict'])
args.start_epoch = checkpoint['epoch'] + 1
best_rank1 = checkpoint['rank1']
print("Loaded checkpoint from '{}'".format(args.resume))
print("- start_epoch: {}\n- rank1: {}".format(args.start_epoch, best_rank1))
if use_gpu:
model = nn.DataParallel(model).cuda()
if args.evaluate:
print("Evaluate only")
distmat = test(model, queryloader, galleryloader, args.pool, use_gpu, return_distmat=True)
if args.visualize_ranks:
visualize_ranked_results(
distmat, dataset,
save_dir=osp.join(args.save_dir, 'ranked_results'),
topk=20,
)
return
start_time = time.time()
train_time = 0
best_epoch = args.start_epoch
print("==> Start training")
for epoch in range(args.start_epoch, args.max_epoch):
start_train_time = time.time()
train(epoch, model, criterion_xent, criterion_htri, optimizer, trainloader, use_gpu)
train_time += round(time.time() - start_train_time)
scheduler.step()
if (epoch + 1) > args.start_eval and args.eval_step > 0 and (epoch + 1) % args.eval_step == 0 or (epoch + 1) == args.max_epoch:
print("==> Test")
rank1 = test(model, queryloader, galleryloader, args.pool, use_gpu)
is_best = rank1 > best_rank1
if is_best:
best_rank1 = rank1
best_epoch = epoch + 1
if use_gpu:
state_dict = model.module.state_dict()
else:
state_dict = model.state_dict()
save_checkpoint({
'state_dict': state_dict,
'rank1': rank1,
'epoch': epoch,
}, is_best, osp.join(args.save_dir, 'checkpoint_ep' + str(epoch + 1) + '.pth.tar'))
print("==> Best Rank-1 {:.1%}, achieved at epoch {}".format(best_rank1, best_epoch))
elapsed = round(time.time() - start_time)
elapsed = str(datetime.timedelta(seconds=elapsed))
train_time = str(datetime.timedelta(seconds=train_time))
print("Finished. Total elapsed time (h:m:s): {}. Training time (h:m:s): {}.".format(elapsed, train_time))
def train(epoch, model, criterion_xent, criterion_htri, optimizer, trainloader, use_gpu):
losses = AverageMeter()
batch_time = AverageMeter()
data_time = AverageMeter()
model.train()
end = time.time()
for batch_idx, (imgs, pids, _) in enumerate(trainloader):
data_time.update(time.time() - end)
if use_gpu:
imgs, pids = imgs.cuda(), pids.cuda()
outputs, features = model(imgs)
if args.htri_only:
if isinstance(features, (tuple, list)):
loss = DeepSupervision(criterion_htri, features, pids)
else:
loss = criterion_htri(features, pids)
else:
if isinstance(outputs, (tuple, list)):
xent_loss = DeepSupervision(criterion_xent, outputs, pids)
else:
xent_loss = criterion_xent(outputs, pids)
if isinstance(features, (tuple, list)):
htri_loss = DeepSupervision(criterion_htri, features, pids)
else:
htri_loss = criterion_htri(features, pids)
loss = args.lambda_xent * xent_loss + args.lambda_htri * htri_loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
batch_time.update(time.time() - end)
losses.update(loss.item(), pids.size(0))
if (batch_idx + 1) % args.print_freq == 0:
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.4f} ({data_time.avg:.4f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'.format(
epoch + 1, batch_idx + 1, len(trainloader), batch_time=batch_time,
data_time=data_time, loss=losses))
end = time.time()
def test(model, queryloader, galleryloader, pool, use_gpu, ranks=[1, 5, 10, 20], return_distmat=False):
batch_time = AverageMeter()
model.eval()
with torch.no_grad():
qf, q_pids, q_camids = [], [], []
for batch_idx, (imgs, pids, camids) in enumerate(queryloader):
if use_gpu: imgs = imgs.cuda()
b, s, c, h, w = imgs.size()
imgs = imgs.view(b*s, c, h, w)
end = time.time()
features = model(imgs)
batch_time.update(time.time() - end)
features = features.view(b, s, -1)
if pool == 'avg':
features = torch.mean(features, 1)
else:
features, _ = torch.max(features, 1)
features = features.data.cpu()
qf.append(features)
q_pids.extend(pids)
q_camids.extend(camids)
qf = torch.cat(qf, 0)
q_pids = np.asarray(q_pids)
q_camids = np.asarray(q_camids)
print("Extracted features for query set, obtained {}-by-{} matrix".format(qf.size(0), qf.size(1)))
gf, g_pids, g_camids = [], [], []
for batch_idx, (imgs, pids, camids) in enumerate(galleryloader):
if use_gpu: imgs = imgs.cuda()
b, s, c, h, w = imgs.size()
imgs = imgs.view(b*s, c, h, w)
end = time.time()
features = model(imgs)
batch_time.update(time.time() - end)
features = features.view(b, s, -1)
if pool == 'avg':
features = torch.mean(features, 1)
else:
features, _ = torch.max(features, 1)
features = features.data.cpu()
gf.append(features)
g_pids.extend(pids)
g_camids.extend(camids)
gf = torch.cat(gf, 0)
g_pids = np.asarray(g_pids)
g_camids = np.asarray(g_camids)
print("Extracted features for gallery set, obtained {}-by-{} matrix".format(gf.size(0), gf.size(1)))
print("==> BatchTime(s)/BatchSize(img): {:.3f}/{}".format(batch_time.avg, args.test_batch*args.seq_len))
m, n = qf.size(0), gf.size(0)
distmat = torch.pow(qf, 2).sum(dim=1, keepdim=True).expand(m, n) + \
torch.pow(gf, 2).sum(dim=1, keepdim=True).expand(n, m).t()
distmat.addmm_(1, -2, qf, gf.t())
distmat = distmat.numpy()
print("Computing CMC and mAP")
cmc, mAP = evaluate(distmat, q_pids, g_pids, q_camids, g_camids)
print("Results ----------")
print("mAP: {:.1%}".format(mAP))
print("CMC curve")
for r in ranks:
print("Rank-{:<3}: {:.1%}".format(r, cmc[r-1]))
print("------------------")
if return_distmat:
return distmat
return cmc[0]
if __name__ == '__main__':
main()