deep-person-reid/args.py

213 lines
10 KiB
Python

import argparse
def argument_parser():
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
# ************************************************************
# Datasets (general)
# ************************************************************
parser.add_argument('--root', type=str, default='data',
help="root path to data directory")
parser.add_argument('-s', '--source-names', type=str, required=True, nargs='+',
help="source datasets (delimited by space)")
parser.add_argument('-t', '--target-names', type=str, required=True, nargs='+',
help="target datasets (delimited by space)")
parser.add_argument('-j', '--workers', default=4, type=int,
help="number of data loading workers (tips: 4 or 8 times number of gpus)")
parser.add_argument('--height', type=int, default=256,
help="height of an image")
parser.add_argument('--width', type=int, default=128,
help="width of an image")
parser.add_argument('--split-id', type=int, default=0,
help="split index (note: 0-based)")
parser.add_argument('--train-sampler', type=str, default='',
help="sampler for trainloader")
# ************************************************************
# Video datasets
# ************************************************************
parser.add_argument('--seq-len', type=int, default=15,
help="number of images to sample in a tracklet")
parser.add_argument('--sample-method', type=str, default='evenly',
help="how to sample images from a tracklet")
parser.add_argument('--pool-tracklet-features', type=str, default='avg', choices=['avg', 'max'],
help="how to pool features over a tracklet (for video reid)")
# ************************************************************
# CUHK03-specific setting
# ************************************************************
parser.add_argument('--cuhk03-labeled', action='store_true',
help="use labeled images, if false, use detected images")
parser.add_argument('--cuhk03-classic-split', action='store_true',
help="use classic split by Li et al. CVPR'14")
parser.add_argument('--use-metric-cuhk03', action='store_true',
help="use cuhk03's metric for evaluation")
# ************************************************************
# Optimization options
# ************************************************************
parser.add_argument('--optim', type=str, default='adam',
help="optimization algorithm (see optimizers.py)")
parser.add_argument('--lr', default=0.0003, type=float,
help="initial learning rate")
parser.add_argument('--weight-decay', default=5e-04, type=float,
help="weight decay")
# sgd
parser.add_argument('--momentum', default=0.9, type=float,
help="momentum factor for sgd and rmsprop")
parser.add_argument('--sgd-dampening', default=0, type=float,
help="sgd's dampening for momentum")
parser.add_argument('--sgd-nesterov', action='store_true',
help="whether to enable sgd's Nesterov momentum")
# rmsprop
parser.add_argument('--rmsprop-alpha', default=0.99, type=float,
help="rmsprop's smoothing constant")
# adam/amsgrad
parser.add_argument('--adam-beta1', default=0.9, type=float,
help="exponential decay rate for adam's first moment")
parser.add_argument('--adam-beta2', default=0.999, type=float,
help="exponential decay rate for adam's second moment")
# ************************************************************
# Training hyperparameters
# ************************************************************
parser.add_argument('--max-epoch', default=60, type=int,
help="maximum epochs to run")
parser.add_argument('--start-epoch', default=0, type=int,
help="manual epoch number (useful when restart)")
parser.add_argument('--stepsize', default=[20, 40], nargs='+', type=int,
help="stepsize to decay learning rate")
parser.add_argument('--gamma', default=0.1, type=float,
help="learning rate decay")
parser.add_argument('--train-batch-size', default=32, type=int,
help="training batch size")
parser.add_argument('--test-batch-size', default=100, type=int,
help="test batch size")
parser.add_argument('--fixbase', action='store_true',
help="always fix base network")
parser.add_argument('--fixbase-epoch', type=int, default=0,
help="how many epochs to fix base network (only train randomly initialized classifier)")
parser.add_argument('--open-layers', type=str, nargs='+', default=['classifier'],
help="open specified layers for training while keeping others frozen")
# ************************************************************
# Cross entropy loss-specific setting
# ************************************************************
parser.add_argument('--label-smooth', action='store_true',
help="use label smoothing regularizer in cross entropy loss")
# ************************************************************
# Hard triplet loss-specific setting
# ************************************************************
parser.add_argument('--margin', type=float, default=0.3,
help="margin for triplet loss")
parser.add_argument('--num-instances', type=int, default=4,
help="number of instances per identity")
parser.add_argument('--htri-only', action='store_true',
help="only use hard triplet loss")
parser.add_argument('--lambda-xent', type=float, default=1,
help="weight to balance cross entropy loss")
parser.add_argument('--lambda-htri', type=float, default=1,
help="weight to balance hard triplet loss")
# ************************************************************
# Architecture
# ************************************************************
parser.add_argument('-a', '--arch', type=str, default='resnet50')
# ************************************************************
# Test settings
# ************************************************************
parser.add_argument('--load-weights', type=str, default='',
help="load pretrained weights but ignore layers that don't match in size")
parser.add_argument('--evaluate', action='store_true',
help="evaluate only")
parser.add_argument('--eval-freq', type=int, default=-1,
help="evaluation frequency (set to -1 to test only in the end)")
parser.add_argument('--start-eval', type=int, default=0,
help="start to evaluate after a specific epoch")
# ************************************************************
# Miscs
# ************************************************************
parser.add_argument('--print-freq', type=int, default=10,
help="print frequency")
parser.add_argument('--seed', type=int, default=1,
help="manual seed")
parser.add_argument('--resume', type=str, default='', metavar='PATH',
help="resume from a checkpoint")
parser.add_argument('--save-dir', type=str, default='log',
help="path to save log and model weights")
parser.add_argument('--use-cpu', action='store_true',
help="use cpu")
parser.add_argument('--gpu-devices', default='0', type=str,
help='gpu device ids for CUDA_VISIBLE_DEVICES')
parser.add_argument('--use-avai-gpus', action='store_true',
help="use available gpus instead of specified devices (useful when using managed clusters)")
parser.add_argument('--visualize-ranks', action='store_true',
help="visualize ranked results, only available in evaluation mode")
return parser
def image_dataset_kwargs(parsed_args):
"""
Build kwargs for ImageDataManager in data_manager.py from
the parsed command-line arguments.
"""
return {
'source_names': parsed_args.source_names,
'target_names': parsed_args.target_names,
'root': parsed_args.root,
'split_id': parsed_args.split_id,
'height': parsed_args.height,
'width': parsed_args.width,
'train_batch_size': parsed_args.train_batch_size,
'test_batch_size': parsed_args.test_batch_size,
'workers': parsed_args.workers,
'train_sampler': parsed_args.train_sampler,
'num_instances': parsed_args.num_instances,
'cuhk03_labeled': parsed_args.cuhk03_labeled,
'cuhk03_classic_split': parsed_args.cuhk03_classic_split
}
def video_dataset_kwargs(parsed_args):
"""
Build kwargs for VideoDataManager in data_manager.py from
the parsed command-line arguments.
"""
return {
'source_names': parsed_args.source_names,
'target_names': parsed_args.target_names,
'root': parsed_args.root,
'split_id': parsed_args.split_id,
'height': parsed_args.height,
'width': parsed_args.width,
'train_batch_size': parsed_args.train_batch_size,
'test_batch_size': parsed_args.test_batch_size,
'workers': parsed_args.workers,
'seq_len': parsed_args.seq_len,
'sample_method': parsed_args.sample_method
}
def optimizer_kwargs(parsed_args):
"""
Build kwargs for optimizer in optimizer.py from
the parsed command-line arguments.
"""
return {
'optim': parsed_args.optim,
'lr': parsed_args.lr,
'weight_decay': parsed_args.weight_decay,
'momentum': parsed_args.momentum,
'sgd_dampening': parsed_args.sgd_dampening,
'sgd_nesterov': parsed_args.sgd_nesterov,
'rmsprop_alpha': parsed_args.rmsprop_alpha,
'adam_beta1': parsed_args.adam_beta1,
'adam_beta2': parsed_args.adam_beta2
}