346 lines
26 KiB
HTML
346 lines
26 KiB
HTML
|
|
|
|
<!DOCTYPE html>
|
|
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
|
|
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
|
|
<head>
|
|
<meta charset="utf-8">
|
|
|
|
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
|
|
|
<title>torchreid.engine.image.softmax — torchreid 1.0.5 documentation</title>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<script type="text/javascript" src="../../../../_static/js/modernizr.min.js"></script>
|
|
|
|
|
|
<script type="text/javascript" id="documentation_options" data-url_root="../../../../" src="../../../../_static/documentation_options.js"></script>
|
|
<script type="text/javascript" src="../../../../_static/jquery.js"></script>
|
|
<script type="text/javascript" src="../../../../_static/underscore.js"></script>
|
|
<script type="text/javascript" src="../../../../_static/doctools.js"></script>
|
|
<script type="text/javascript" src="../../../../_static/language_data.js"></script>
|
|
<script async="async" type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-AMS-MML_HTMLorMML"></script>
|
|
|
|
<script type="text/javascript" src="../../../../_static/js/theme.js"></script>
|
|
|
|
|
|
|
|
|
|
<link rel="stylesheet" href="../../../../_static/css/theme.css" type="text/css" />
|
|
<link rel="stylesheet" href="../../../../_static/pygments.css" type="text/css" />
|
|
<link rel="index" title="Index" href="../../../../genindex.html" />
|
|
<link rel="search" title="Search" href="../../../../search.html" />
|
|
</head>
|
|
|
|
<body class="wy-body-for-nav">
|
|
|
|
|
|
<div class="wy-grid-for-nav">
|
|
|
|
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
|
|
<div class="wy-side-scroll">
|
|
<div class="wy-side-nav-search" >
|
|
|
|
|
|
|
|
<a href="../../../../index.html" class="icon icon-home"> torchreid
|
|
|
|
|
|
|
|
</a>
|
|
|
|
|
|
|
|
|
|
<div class="version">
|
|
1.0.5
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div role="search">
|
|
<form id="rtd-search-form" class="wy-form" action="../../../../search.html" method="get">
|
|
<input type="text" name="q" placeholder="Search docs" />
|
|
<input type="hidden" name="check_keywords" value="yes" />
|
|
<input type="hidden" name="area" value="default" />
|
|
</form>
|
|
</div>
|
|
|
|
|
|
</div>
|
|
|
|
<div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<ul>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html">How-to</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../../../datasets.html">Datasets</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../../../evaluation.html">Evaluation</a></li>
|
|
</ul>
|
|
<p class="caption"><span class="caption-text">Package Reference</span></p>
|
|
<ul>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../../../pkg/data.html">torchreid.data</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../../../pkg/engine.html">torchreid.engine</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../../../pkg/losses.html">torchreid.losses</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../../../pkg/metrics.html">torchreid.metrics</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../../../pkg/models.html">torchreid.models</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../../../pkg/optim.html">torchreid.optim</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../../../pkg/utils.html">torchreid.utils</a></li>
|
|
</ul>
|
|
<p class="caption"><span class="caption-text">Resources</span></p>
|
|
<ul>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../../../AWESOME_REID.html">Awesome-ReID</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../../../MODEL_ZOO.html">Model Zoo</a></li>
|
|
</ul>
|
|
|
|
|
|
|
|
</div>
|
|
</div>
|
|
</nav>
|
|
|
|
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
|
|
|
|
|
|
<nav class="wy-nav-top" aria-label="top navigation">
|
|
|
|
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
|
|
<a href="../../../../index.html">torchreid</a>
|
|
|
|
</nav>
|
|
|
|
|
|
<div class="wy-nav-content">
|
|
|
|
<div class="rst-content">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<div role="navigation" aria-label="breadcrumbs navigation">
|
|
|
|
<ul class="wy-breadcrumbs">
|
|
|
|
<li><a href="../../../../index.html">Docs</a> »</li>
|
|
|
|
<li><a href="../../../index.html">Module code</a> »</li>
|
|
|
|
<li>torchreid.engine.image.softmax</li>
|
|
|
|
|
|
<li class="wy-breadcrumbs-aside">
|
|
|
|
</li>
|
|
|
|
</ul>
|
|
|
|
|
|
<hr/>
|
|
</div>
|
|
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
|
|
<div itemprop="articleBody">
|
|
|
|
<h1>Source code for torchreid.engine.image.softmax</h1><div class="highlight"><pre>
|
|
<span></span><span class="kn">from</span> <span class="nn">__future__</span> <span class="k">import</span> <span class="n">absolute_import</span>
|
|
<span class="kn">from</span> <span class="nn">__future__</span> <span class="k">import</span> <span class="n">print_function</span>
|
|
<span class="kn">from</span> <span class="nn">__future__</span> <span class="k">import</span> <span class="n">division</span>
|
|
|
|
<span class="kn">import</span> <span class="nn">time</span>
|
|
<span class="kn">import</span> <span class="nn">datetime</span>
|
|
|
|
<span class="kn">from</span> <span class="nn">torchreid.engine</span> <span class="k">import</span> <span class="n">Engine</span>
|
|
<span class="kn">from</span> <span class="nn">torchreid.losses</span> <span class="k">import</span> <span class="n">CrossEntropyLoss</span>
|
|
<span class="kn">from</span> <span class="nn">torchreid.utils</span> <span class="k">import</span> <span class="n">AverageMeter</span><span class="p">,</span> <span class="n">open_specified_layers</span><span class="p">,</span> <span class="n">open_all_layers</span>
|
|
<span class="kn">from</span> <span class="nn">torchreid</span> <span class="k">import</span> <span class="n">metrics</span>
|
|
|
|
|
|
<div class="viewcode-block" id="ImageSoftmaxEngine"><a class="viewcode-back" href="../../../../pkg/engine.html#torchreid.engine.image.softmax.ImageSoftmaxEngine">[docs]</a><span class="k">class</span> <span class="nc">ImageSoftmaxEngine</span><span class="p">(</span><span class="n">Engine</span><span class="p">):</span>
|
|
<span class="sa">r</span><span class="sd">"""Softmax-loss engine for image-reid.</span>
|
|
|
|
<span class="sd"> Args:</span>
|
|
<span class="sd"> datamanager (DataManager): an instance of ``torchreid.data.ImageDataManager``</span>
|
|
<span class="sd"> or ``torchreid.data.VideoDataManager``.</span>
|
|
<span class="sd"> model (nn.Module): model instance.</span>
|
|
<span class="sd"> optimizer (Optimizer): an Optimizer.</span>
|
|
<span class="sd"> scheduler (LRScheduler, optional): if None, no learning rate decay will be performed.</span>
|
|
<span class="sd"> use_gpu (bool, optional): use gpu. Default is True.</span>
|
|
<span class="sd"> label_smooth (bool, optional): use label smoothing regularizer. Default is True.</span>
|
|
|
|
<span class="sd"> Examples::</span>
|
|
<span class="sd"> </span>
|
|
<span class="sd"> import torchreid</span>
|
|
<span class="sd"> datamanager = torchreid.data.ImageDataManager(</span>
|
|
<span class="sd"> root='path/to/reid-data',</span>
|
|
<span class="sd"> sources='market1501',</span>
|
|
<span class="sd"> height=256,</span>
|
|
<span class="sd"> width=128,</span>
|
|
<span class="sd"> combineall=False,</span>
|
|
<span class="sd"> batch_size=32</span>
|
|
<span class="sd"> )</span>
|
|
<span class="sd"> model = torchreid.models.build_model(</span>
|
|
<span class="sd"> name='resnet50',</span>
|
|
<span class="sd"> num_classes=datamanager.num_train_pids,</span>
|
|
<span class="sd"> loss='softmax'</span>
|
|
<span class="sd"> )</span>
|
|
<span class="sd"> model = model.cuda()</span>
|
|
<span class="sd"> optimizer = torchreid.optim.build_optimizer(</span>
|
|
<span class="sd"> model, optim='adam', lr=0.0003</span>
|
|
<span class="sd"> )</span>
|
|
<span class="sd"> scheduler = torchreid.optim.build_lr_scheduler(</span>
|
|
<span class="sd"> optimizer,</span>
|
|
<span class="sd"> lr_scheduler='single_step',</span>
|
|
<span class="sd"> stepsize=20</span>
|
|
<span class="sd"> )</span>
|
|
<span class="sd"> engine = torchreid.engine.ImageSoftmaxEngine(</span>
|
|
<span class="sd"> datamanager, model, optimizer, scheduler=scheduler</span>
|
|
<span class="sd"> )</span>
|
|
<span class="sd"> engine.run(</span>
|
|
<span class="sd"> max_epoch=60,</span>
|
|
<span class="sd"> save_dir='log/resnet50-softmax-market1501',</span>
|
|
<span class="sd"> print_freq=10</span>
|
|
<span class="sd"> )</span>
|
|
<span class="sd"> """</span>
|
|
|
|
<span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">datamanager</span><span class="p">,</span> <span class="n">model</span><span class="p">,</span> <span class="n">optimizer</span><span class="p">,</span> <span class="n">scheduler</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">use_gpu</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span>
|
|
<span class="n">label_smooth</span><span class="o">=</span><span class="kc">True</span><span class="p">):</span>
|
|
<span class="nb">super</span><span class="p">(</span><span class="n">ImageSoftmaxEngine</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">datamanager</span><span class="p">,</span> <span class="n">model</span><span class="p">,</span> <span class="n">optimizer</span><span class="p">,</span> <span class="n">scheduler</span><span class="p">,</span> <span class="n">use_gpu</span><span class="p">)</span>
|
|
|
|
<span class="bp">self</span><span class="o">.</span><span class="n">criterion</span> <span class="o">=</span> <span class="n">CrossEntropyLoss</span><span class="p">(</span>
|
|
<span class="n">num_classes</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">datamanager</span><span class="o">.</span><span class="n">num_train_pids</span><span class="p">,</span>
|
|
<span class="n">use_gpu</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">use_gpu</span><span class="p">,</span>
|
|
<span class="n">label_smooth</span><span class="o">=</span><span class="n">label_smooth</span>
|
|
<span class="p">)</span>
|
|
|
|
<div class="viewcode-block" id="ImageSoftmaxEngine.train"><a class="viewcode-back" href="../../../../pkg/engine.html#torchreid.engine.image.softmax.ImageSoftmaxEngine.train">[docs]</a> <span class="k">def</span> <span class="nf">train</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">epoch</span><span class="p">,</span> <span class="n">max_epoch</span><span class="p">,</span> <span class="n">trainloader</span><span class="p">,</span> <span class="n">fixbase_epoch</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">open_layers</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">print_freq</span><span class="o">=</span><span class="mi">10</span><span class="p">):</span>
|
|
<span class="n">losses</span> <span class="o">=</span> <span class="n">AverageMeter</span><span class="p">()</span>
|
|
<span class="n">accs</span> <span class="o">=</span> <span class="n">AverageMeter</span><span class="p">()</span>
|
|
<span class="n">batch_time</span> <span class="o">=</span> <span class="n">AverageMeter</span><span class="p">()</span>
|
|
<span class="n">data_time</span> <span class="o">=</span> <span class="n">AverageMeter</span><span class="p">()</span>
|
|
|
|
<span class="bp">self</span><span class="o">.</span><span class="n">model</span><span class="o">.</span><span class="n">train</span><span class="p">()</span>
|
|
<span class="k">if</span> <span class="p">(</span><span class="n">epoch</span><span class="o">+</span><span class="mi">1</span><span class="p">)</span><span class="o"><=</span><span class="n">fixbase_epoch</span> <span class="ow">and</span> <span class="n">open_layers</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
|
|
<span class="nb">print</span><span class="p">(</span><span class="s1">'* Only train </span><span class="si">{}</span><span class="s1"> (epoch: </span><span class="si">{}</span><span class="s1">/</span><span class="si">{}</span><span class="s1">)'</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">open_layers</span><span class="p">,</span> <span class="n">epoch</span><span class="o">+</span><span class="mi">1</span><span class="p">,</span> <span class="n">fixbase_epoch</span><span class="p">))</span>
|
|
<span class="n">open_specified_layers</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">model</span><span class="p">,</span> <span class="n">open_layers</span><span class="p">)</span>
|
|
<span class="k">else</span><span class="p">:</span>
|
|
<span class="n">open_all_layers</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">model</span><span class="p">)</span>
|
|
|
|
<span class="n">num_batches</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">trainloader</span><span class="p">)</span>
|
|
<span class="n">end</span> <span class="o">=</span> <span class="n">time</span><span class="o">.</span><span class="n">time</span><span class="p">()</span>
|
|
<span class="k">for</span> <span class="n">batch_idx</span><span class="p">,</span> <span class="n">data</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">trainloader</span><span class="p">):</span>
|
|
<span class="n">data_time</span><span class="o">.</span><span class="n">update</span><span class="p">(</span><span class="n">time</span><span class="o">.</span><span class="n">time</span><span class="p">()</span> <span class="o">-</span> <span class="n">end</span><span class="p">)</span>
|
|
|
|
<span class="n">imgs</span><span class="p">,</span> <span class="n">pids</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_parse_data_for_train</span><span class="p">(</span><span class="n">data</span><span class="p">)</span>
|
|
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">use_gpu</span><span class="p">:</span>
|
|
<span class="n">imgs</span> <span class="o">=</span> <span class="n">imgs</span><span class="o">.</span><span class="n">cuda</span><span class="p">()</span>
|
|
<span class="n">pids</span> <span class="o">=</span> <span class="n">pids</span><span class="o">.</span><span class="n">cuda</span><span class="p">()</span>
|
|
|
|
<span class="bp">self</span><span class="o">.</span><span class="n">optimizer</span><span class="o">.</span><span class="n">zero_grad</span><span class="p">()</span>
|
|
<span class="n">outputs</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">model</span><span class="p">(</span><span class="n">imgs</span><span class="p">)</span>
|
|
<span class="n">loss</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_compute_loss</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">criterion</span><span class="p">,</span> <span class="n">outputs</span><span class="p">,</span> <span class="n">pids</span><span class="p">)</span>
|
|
<span class="n">loss</span><span class="o">.</span><span class="n">backward</span><span class="p">()</span>
|
|
<span class="bp">self</span><span class="o">.</span><span class="n">optimizer</span><span class="o">.</span><span class="n">step</span><span class="p">()</span>
|
|
|
|
<span class="n">batch_time</span><span class="o">.</span><span class="n">update</span><span class="p">(</span><span class="n">time</span><span class="o">.</span><span class="n">time</span><span class="p">()</span> <span class="o">-</span> <span class="n">end</span><span class="p">)</span>
|
|
|
|
<span class="n">losses</span><span class="o">.</span><span class="n">update</span><span class="p">(</span><span class="n">loss</span><span class="o">.</span><span class="n">item</span><span class="p">(),</span> <span class="n">pids</span><span class="o">.</span><span class="n">size</span><span class="p">(</span><span class="mi">0</span><span class="p">))</span>
|
|
<span class="n">accs</span><span class="o">.</span><span class="n">update</span><span class="p">(</span><span class="n">metrics</span><span class="o">.</span><span class="n">accuracy</span><span class="p">(</span><span class="n">outputs</span><span class="p">,</span> <span class="n">pids</span><span class="p">)[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">item</span><span class="p">())</span>
|
|
|
|
<span class="k">if</span> <span class="p">(</span><span class="n">batch_idx</span><span class="o">+</span><span class="mi">1</span><span class="p">)</span> <span class="o">%</span> <span class="n">print_freq</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span>
|
|
<span class="c1"># estimate remaining time</span>
|
|
<span class="n">eta_seconds</span> <span class="o">=</span> <span class="n">batch_time</span><span class="o">.</span><span class="n">avg</span> <span class="o">*</span> <span class="p">(</span><span class="n">num_batches</span><span class="o">-</span><span class="p">(</span><span class="n">batch_idx</span><span class="o">+</span><span class="mi">1</span><span class="p">)</span> <span class="o">+</span> <span class="p">(</span><span class="n">max_epoch</span><span class="o">-</span><span class="p">(</span><span class="n">epoch</span><span class="o">+</span><span class="mi">1</span><span class="p">))</span><span class="o">*</span><span class="n">num_batches</span><span class="p">)</span>
|
|
<span class="n">eta_str</span> <span class="o">=</span> <span class="nb">str</span><span class="p">(</span><span class="n">datetime</span><span class="o">.</span><span class="n">timedelta</span><span class="p">(</span><span class="n">seconds</span><span class="o">=</span><span class="nb">int</span><span class="p">(</span><span class="n">eta_seconds</span><span class="p">)))</span>
|
|
<span class="nb">print</span><span class="p">(</span><span class="s1">'Epoch: [</span><span class="si">{0}</span><span class="s1">/</span><span class="si">{1}</span><span class="s1">][</span><span class="si">{2}</span><span class="s1">/</span><span class="si">{3}</span><span class="s1">]</span><span class="se">\t</span><span class="s1">'</span>
|
|
<span class="s1">'Time </span><span class="si">{batch_time.val:.3f}</span><span class="s1"> (</span><span class="si">{batch_time.avg:.3f}</span><span class="s1">)</span><span class="se">\t</span><span class="s1">'</span>
|
|
<span class="s1">'Data </span><span class="si">{data_time.val:.3f}</span><span class="s1"> (</span><span class="si">{data_time.avg:.3f}</span><span class="s1">)</span><span class="se">\t</span><span class="s1">'</span>
|
|
<span class="s1">'Loss </span><span class="si">{loss.val:.4f}</span><span class="s1"> (</span><span class="si">{loss.avg:.4f}</span><span class="s1">)</span><span class="se">\t</span><span class="s1">'</span>
|
|
<span class="s1">'Acc </span><span class="si">{acc.val:.2f}</span><span class="s1"> (</span><span class="si">{acc.avg:.2f}</span><span class="s1">)</span><span class="se">\t</span><span class="s1">'</span>
|
|
<span class="s1">'Lr </span><span class="si">{lr:.6f}</span><span class="se">\t</span><span class="s1">'</span>
|
|
<span class="s1">'eta </span><span class="si">{eta}</span><span class="s1">'</span><span class="o">.</span><span class="n">format</span><span class="p">(</span>
|
|
<span class="n">epoch</span><span class="o">+</span><span class="mi">1</span><span class="p">,</span> <span class="n">max_epoch</span><span class="p">,</span> <span class="n">batch_idx</span><span class="o">+</span><span class="mi">1</span><span class="p">,</span> <span class="n">num_batches</span><span class="p">,</span>
|
|
<span class="n">batch_time</span><span class="o">=</span><span class="n">batch_time</span><span class="p">,</span>
|
|
<span class="n">data_time</span><span class="o">=</span><span class="n">data_time</span><span class="p">,</span>
|
|
<span class="n">loss</span><span class="o">=</span><span class="n">losses</span><span class="p">,</span>
|
|
<span class="n">acc</span><span class="o">=</span><span class="n">accs</span><span class="p">,</span>
|
|
<span class="n">lr</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">optimizer</span><span class="o">.</span><span class="n">param_groups</span><span class="p">[</span><span class="mi">0</span><span class="p">][</span><span class="s1">'lr'</span><span class="p">],</span>
|
|
<span class="n">eta</span><span class="o">=</span><span class="n">eta_str</span>
|
|
<span class="p">)</span>
|
|
<span class="p">)</span>
|
|
|
|
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">writer</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
|
|
<span class="n">n_iter</span> <span class="o">=</span> <span class="n">epoch</span> <span class="o">*</span> <span class="n">num_batches</span> <span class="o">+</span> <span class="n">batch_idx</span>
|
|
<span class="bp">self</span><span class="o">.</span><span class="n">writer</span><span class="o">.</span><span class="n">add_scalar</span><span class="p">(</span><span class="s1">'Train/Time'</span><span class="p">,</span> <span class="n">batch_time</span><span class="o">.</span><span class="n">avg</span><span class="p">,</span> <span class="n">n_iter</span><span class="p">)</span>
|
|
<span class="bp">self</span><span class="o">.</span><span class="n">writer</span><span class="o">.</span><span class="n">add_scalar</span><span class="p">(</span><span class="s1">'Train/Data'</span><span class="p">,</span> <span class="n">data_time</span><span class="o">.</span><span class="n">avg</span><span class="p">,</span> <span class="n">n_iter</span><span class="p">)</span>
|
|
<span class="bp">self</span><span class="o">.</span><span class="n">writer</span><span class="o">.</span><span class="n">add_scalar</span><span class="p">(</span><span class="s1">'Train/Loss'</span><span class="p">,</span> <span class="n">losses</span><span class="o">.</span><span class="n">avg</span><span class="p">,</span> <span class="n">n_iter</span><span class="p">)</span>
|
|
<span class="bp">self</span><span class="o">.</span><span class="n">writer</span><span class="o">.</span><span class="n">add_scalar</span><span class="p">(</span><span class="s1">'Train/Acc'</span><span class="p">,</span> <span class="n">accs</span><span class="o">.</span><span class="n">avg</span><span class="p">,</span> <span class="n">n_iter</span><span class="p">)</span>
|
|
<span class="bp">self</span><span class="o">.</span><span class="n">writer</span><span class="o">.</span><span class="n">add_scalar</span><span class="p">(</span><span class="s1">'Train/Lr'</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">optimizer</span><span class="o">.</span><span class="n">param_groups</span><span class="p">[</span><span class="mi">0</span><span class="p">][</span><span class="s1">'lr'</span><span class="p">],</span> <span class="n">n_iter</span><span class="p">)</span>
|
|
|
|
<span class="n">end</span> <span class="o">=</span> <span class="n">time</span><span class="o">.</span><span class="n">time</span><span class="p">()</span>
|
|
|
|
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">scheduler</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
|
|
<span class="bp">self</span><span class="o">.</span><span class="n">scheduler</span><span class="o">.</span><span class="n">step</span><span class="p">()</span></div></div>
|
|
</pre></div>
|
|
|
|
</div>
|
|
|
|
</div>
|
|
<footer>
|
|
|
|
|
|
<hr/>
|
|
|
|
<div role="contentinfo">
|
|
<p>
|
|
© Copyright 2019, Kaiyang Zhou
|
|
|
|
</p>
|
|
</div>
|
|
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/rtfd/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
|
|
|
|
</footer>
|
|
|
|
</div>
|
|
</div>
|
|
|
|
</section>
|
|
|
|
</div>
|
|
|
|
|
|
|
|
<script type="text/javascript">
|
|
jQuery(function () {
|
|
SphinxRtdTheme.Navigation.enable(true);
|
|
});
|
|
</script>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
</body>
|
|
</html> |