269 lines
8.7 KiB
Python
269 lines
8.7 KiB
Python
from __future__ import absolute_import
|
|
from __future__ import division
|
|
|
|
__all__ = ['resnet50mid']
|
|
|
|
import torch
|
|
from torch import nn
|
|
from torch.nn import functional as F
|
|
import torchvision
|
|
import torch.utils.model_zoo as model_zoo
|
|
|
|
|
|
model_urls = {
|
|
'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
|
|
'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
|
|
'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
|
|
'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
|
|
'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
|
|
}
|
|
|
|
|
|
def conv3x3(in_planes, out_planes, stride=1):
|
|
"""3x3 convolution with padding"""
|
|
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
|
|
padding=1, bias=False)
|
|
|
|
|
|
class BasicBlock(nn.Module):
|
|
expansion = 1
|
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None):
|
|
super(BasicBlock, self).__init__()
|
|
self.conv1 = conv3x3(inplanes, planes, stride)
|
|
self.bn1 = nn.BatchNorm2d(planes)
|
|
self.relu = nn.ReLU(inplace=True)
|
|
self.conv2 = conv3x3(planes, planes)
|
|
self.bn2 = nn.BatchNorm2d(planes)
|
|
self.downsample = downsample
|
|
self.stride = stride
|
|
|
|
def forward(self, x):
|
|
residual = x
|
|
|
|
out = self.conv1(x)
|
|
out = self.bn1(out)
|
|
out = self.relu(out)
|
|
|
|
out = self.conv2(out)
|
|
out = self.bn2(out)
|
|
|
|
if self.downsample is not None:
|
|
residual = self.downsample(x)
|
|
|
|
out += residual
|
|
out = self.relu(out)
|
|
|
|
return out
|
|
|
|
|
|
class Bottleneck(nn.Module):
|
|
expansion = 4
|
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None):
|
|
super(Bottleneck, self).__init__()
|
|
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
|
|
self.bn1 = nn.BatchNorm2d(planes)
|
|
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
|
|
padding=1, bias=False)
|
|
self.bn2 = nn.BatchNorm2d(planes)
|
|
self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False)
|
|
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
|
|
self.relu = nn.ReLU(inplace=True)
|
|
self.downsample = downsample
|
|
self.stride = stride
|
|
|
|
def forward(self, x):
|
|
residual = x
|
|
|
|
out = self.conv1(x)
|
|
out = self.bn1(out)
|
|
out = self.relu(out)
|
|
|
|
out = self.conv2(out)
|
|
out = self.bn2(out)
|
|
out = self.relu(out)
|
|
|
|
out = self.conv3(out)
|
|
out = self.bn3(out)
|
|
|
|
if self.downsample is not None:
|
|
residual = self.downsample(x)
|
|
|
|
out += residual
|
|
out = self.relu(out)
|
|
|
|
return out
|
|
|
|
|
|
class ResNetMid(nn.Module):
|
|
"""Residual network + mid-level features.
|
|
|
|
Reference:
|
|
Yu et al. The Devil is in the Middle: Exploiting Mid-level Representations for
|
|
Cross-Domain Instance Matching. arXiv:1711.08106.
|
|
"""
|
|
|
|
def __init__(self, num_classes, loss, block, layers,
|
|
last_stride=2,
|
|
fc_dims=None,
|
|
**kwargs):
|
|
self.inplanes = 64
|
|
super(ResNetMid, self).__init__()
|
|
self.loss = loss
|
|
self.feature_dim = 512 * block.expansion
|
|
|
|
# backbone network
|
|
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
|
|
self.bn1 = nn.BatchNorm2d(64)
|
|
self.relu = nn.ReLU(inplace=True)
|
|
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
|
self.layer1 = self._make_layer(block, 64, layers[0])
|
|
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
|
|
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
|
|
self.layer4 = self._make_layer(block, 512, layers[3], stride=last_stride)
|
|
|
|
self.global_avgpool = nn.AdaptiveAvgPool2d(1)
|
|
assert fc_dims is not None
|
|
self.fc_fusion = self._construct_fc_layer(fc_dims, 512 * block.expansion * 2)
|
|
self.feature_dim += 512 * block.expansion
|
|
self.classifier = nn.Linear(self.feature_dim, num_classes)
|
|
|
|
self._init_params()
|
|
|
|
def _make_layer(self, block, planes, blocks, stride=1):
|
|
downsample = None
|
|
if stride != 1 or self.inplanes != planes * block.expansion:
|
|
downsample = nn.Sequential(
|
|
nn.Conv2d(self.inplanes, planes * block.expansion,
|
|
kernel_size=1, stride=stride, bias=False),
|
|
nn.BatchNorm2d(planes * block.expansion),
|
|
)
|
|
|
|
layers = []
|
|
layers.append(block(self.inplanes, planes, stride, downsample))
|
|
self.inplanes = planes * block.expansion
|
|
for i in range(1, blocks):
|
|
layers.append(block(self.inplanes, planes))
|
|
|
|
return nn.Sequential(*layers)
|
|
|
|
def _construct_fc_layer(self, fc_dims, input_dim, dropout_p=None):
|
|
"""Constructs fully connected layer
|
|
|
|
Args:
|
|
fc_dims (list or tuple): dimensions of fc layers, if None, no fc layers are constructed
|
|
input_dim (int): input dimension
|
|
dropout_p (float): dropout probability, if None, dropout is unused
|
|
"""
|
|
if fc_dims is None:
|
|
self.feature_dim = input_dim
|
|
return None
|
|
|
|
assert isinstance(fc_dims, (list, tuple)), 'fc_dims must be either list or tuple, but got {}'.format(type(fc_dims))
|
|
|
|
layers = []
|
|
for dim in fc_dims:
|
|
layers.append(nn.Linear(input_dim, dim))
|
|
layers.append(nn.BatchNorm1d(dim))
|
|
layers.append(nn.ReLU(inplace=True))
|
|
if dropout_p is not None:
|
|
layers.append(nn.Dropout(p=dropout_p))
|
|
input_dim = dim
|
|
|
|
self.feature_dim = fc_dims[-1]
|
|
|
|
return nn.Sequential(*layers)
|
|
|
|
def _init_params(self):
|
|
for m in self.modules():
|
|
if isinstance(m, nn.Conv2d):
|
|
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
|
if m.bias is not None:
|
|
nn.init.constant_(m.bias, 0)
|
|
elif isinstance(m, nn.BatchNorm2d):
|
|
nn.init.constant_(m.weight, 1)
|
|
nn.init.constant_(m.bias, 0)
|
|
elif isinstance(m, nn.BatchNorm1d):
|
|
nn.init.constant_(m.weight, 1)
|
|
nn.init.constant_(m.bias, 0)
|
|
elif isinstance(m, nn.Linear):
|
|
nn.init.normal_(m.weight, 0, 0.01)
|
|
if m.bias is not None:
|
|
nn.init.constant_(m.bias, 0)
|
|
|
|
def featuremaps(self, x):
|
|
x = self.conv1(x)
|
|
x = self.bn1(x)
|
|
x = self.relu(x)
|
|
x = self.maxpool(x)
|
|
x = self.layer1(x)
|
|
x = self.layer2(x)
|
|
x = self.layer3(x)
|
|
x4a = self.layer4[0](x)
|
|
x4b = self.layer4[1](x4a)
|
|
x4c = self.layer4[2](x4b)
|
|
return x4a, x4b, x4c
|
|
|
|
def forward(self, x):
|
|
x4a, x4b, x4c = self.featuremaps(x)
|
|
|
|
v4a = self.global_avgpool(x4a)
|
|
v4b = self.global_avgpool(x4b)
|
|
v4c = self.global_avgpool(x4c)
|
|
v4ab = torch.cat([v4a, v4b], 1)
|
|
v4ab = v4ab.view(v4ab.size(0), -1)
|
|
v4ab = self.fc_fusion(v4ab)
|
|
v4c = v4c.view(v4c.size(0), -1)
|
|
v = torch.cat([v4ab, v4c], 1)
|
|
|
|
if not self.training:
|
|
return v
|
|
|
|
y = self.classifier(v)
|
|
|
|
if self.loss == 'softmax':
|
|
return y
|
|
elif self.loss == 'triplet':
|
|
return y, v
|
|
else:
|
|
raise KeyError('Unsupported loss: {}'.format(self.loss))
|
|
|
|
|
|
def init_pretrained_weights(model, model_url):
|
|
"""Initializes model with pretrained weights.
|
|
|
|
Layers that don't match with pretrained layers in name or size are kept unchanged.
|
|
"""
|
|
pretrain_dict = model_zoo.load_url(model_url)
|
|
model_dict = model.state_dict()
|
|
pretrain_dict = {k: v for k, v in pretrain_dict.items() if k in model_dict and model_dict[k].size() == v.size()}
|
|
model_dict.update(pretrain_dict)
|
|
model.load_state_dict(model_dict)
|
|
print('Initialized model with pretrained weights from {}'.format(model_url))
|
|
|
|
|
|
"""
|
|
Residual network configurations:
|
|
--
|
|
resnet18: block=BasicBlock, layers=[2, 2, 2, 2]
|
|
resnet34: block=BasicBlock, layers=[3, 4, 6, 3]
|
|
resnet50: block=Bottleneck, layers=[3, 4, 6, 3]
|
|
resnet101: block=Bottleneck, layers=[3, 4, 23, 3]
|
|
resnet152: block=Bottleneck, layers=[3, 8, 36, 3]
|
|
"""
|
|
|
|
|
|
def resnet50mid(num_classes, loss='softmax', pretrained=True, **kwargs):
|
|
model = ResNetMid(
|
|
num_classes=num_classes,
|
|
loss=loss,
|
|
block=Bottleneck,
|
|
layers=[3, 4, 6, 3],
|
|
last_stride=2,
|
|
fc_dims=[1024],
|
|
**kwargs
|
|
)
|
|
if pretrained:
|
|
init_pretrained_weights(model, model_urls['resnet50'])
|
|
return model |