deep-person-reid/torchreid/datasets/dukemtmcvidreid.py

151 lines
6.0 KiB
Python

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import glob
import re
import sys
import urllib
import tarfile
import zipfile
import os.path as osp
from scipy.io import loadmat
import numpy as np
import h5py
from scipy.misc import imsave
from torchreid.utils.iotools import mkdir_if_missing, write_json, read_json
from .bases import BaseVideoDataset
class DukeMTMCVidReID(BaseVideoDataset):
"""
DukeMTMCVidReID
Reference:
Wu et al. Exploit the Unknown Gradually: One-Shot Video-Based Person
Re-Identification by Stepwise Learning. CVPR 2018.
URL: https://github.com/Yu-Wu/DukeMTMC-VideoReID
Dataset statistics:
# identities: 702 (train) + 702 (test)
# tracklets: 2196 (train) + 2636 (test)
"""
dataset_dir = 'dukemtmc-vidreid'
def __init__(self, root='data', min_seq_len=0, verbose=True, **kwargs):
super(DukeMTMCVidReID, self).__init__(root)
self.dataset_dir = osp.join(self.root, self.dataset_dir)
self.dataset_url = 'http://vision.cs.duke.edu/DukeMTMC/data/misc/DukeMTMC-VideoReID.zip'
self.train_dir = osp.join(self.dataset_dir, 'DukeMTMC-VideoReID/train')
self.query_dir = osp.join(self.dataset_dir, 'DukeMTMC-VideoReID/query')
self.gallery_dir = osp.join(self.dataset_dir, 'DukeMTMC-VideoReID/gallery')
self.split_train_json_path = osp.join(self.dataset_dir, 'split_train.json')
self.split_query_json_path = osp.join(self.dataset_dir, 'split_query.json')
self.split_gallery_json_path = osp.join(self.dataset_dir, 'split_gallery.json')
self.min_seq_len = min_seq_len
self._download_data()
self._check_before_run()
print('Note: if root path is changed, the previously generated json files need to be re-generated (so delete them first)')
train = self._process_dir(self.train_dir, self.split_train_json_path, relabel=True)
query = self._process_dir(self.query_dir, self.split_query_json_path, relabel=False)
gallery = self._process_dir(self.gallery_dir, self.split_gallery_json_path, relabel=False)
if verbose:
print('=> DukeMTMC-VideoReID loaded')
self.print_dataset_statistics(train, query, gallery)
self.train = train
self.query = query
self.gallery = gallery
self.num_train_pids, _, self.num_train_cams = self.get_videodata_info(self.train)
self.num_query_pids, _, self.num_query_cams = self.get_videodata_info(self.query)
self.num_gallery_pids, _, self.num_gallery_cams = self.get_videodata_info(self.gallery)
def _download_data(self):
if osp.exists(self.dataset_dir):
print('This dataset has been downloaded.')
return
print('Creating directory {}'.format(self.dataset_dir))
mkdir_if_missing(self.dataset_dir)
fpath = osp.join(self.dataset_dir, osp.basename(self.dataset_url))
print('Downloading DukeMTMC-VideoReID dataset')
urllib.urlretrieve(self.dataset_url, fpath)
print('Extracting files')
zip_ref = zipfile.ZipFile(fpath, 'r')
zip_ref.extractall(self.dataset_dir)
zip_ref.close()
def _check_before_run(self):
"""Check if all files are available before going deeper"""
if not osp.exists(self.dataset_dir):
raise RuntimeError('"{}" is not available'.format(self.dataset_dir))
if not osp.exists(self.train_dir):
raise RuntimeError('"{}" is not available'.format(self.train_dir))
if not osp.exists(self.query_dir):
raise RuntimeError('"{}" is not available'.format(self.query_dir))
if not osp.exists(self.gallery_dir):
raise RuntimeError('"{}" is not available'.format(self.gallery_dir))
def _process_dir(self, dir_path, json_path, relabel):
if osp.exists(json_path):
print('=> {} generated before, awesome!'.format(json_path))
split = read_json(json_path)
return split['tracklets']
print('=> Automatically generating split (might take a while for the first time, have a coffe)')
pdirs = glob.glob(osp.join(dir_path, '*')) # avoid .DS_Store
print('Processing "{}" with {} person identities'.format(dir_path, len(pdirs)))
pid_container = set()
for pdir in pdirs:
pid = int(osp.basename(pdir))
pid_container.add(pid)
pid2label = {pid:label for label, pid in enumerate(pid_container)}
tracklets = []
for pdir in pdirs:
pid = int(osp.basename(pdir))
if relabel: pid = pid2label[pid]
tdirs = glob.glob(osp.join(pdir, '*'))
for tdir in tdirs:
raw_img_paths = glob.glob(osp.join(tdir, '*.jpg'))
num_imgs = len(raw_img_paths)
if num_imgs < self.min_seq_len:
continue
img_paths = []
for img_idx in range(num_imgs):
# some tracklet starts from 0002 instead of 0001
img_idx_name = 'F' + str(img_idx+1).zfill(4)
res = glob.glob(osp.join(tdir, '*' + img_idx_name + '*.jpg'))
if len(res) == 0:
print('Warn: index name {} in {} is missing, jump to next'.format(img_idx_name, tdir))
continue
img_paths.append(res[0])
img_name = osp.basename(img_paths[0])
if img_name.find('_') == -1:
# old naming format: 0001C6F0099X30823.jpg
camid = int(img_name[5]) - 1
else:
# new naming format: 0001_C6_F0099_X30823.jpg
camid = int(img_name[6]) - 1
img_paths = tuple(img_paths)
tracklets.append((img_paths, pid, camid))
print('Saving split to {}'.format(json_path))
split_dict = {
'tracklets': tracklets,
}
write_json(split_dict, json_path)
return tracklets