156 lines
6.0 KiB
Python
156 lines
6.0 KiB
Python
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import os
|
|
import glob
|
|
import re
|
|
import sys
|
|
import urllib
|
|
import tarfile
|
|
import zipfile
|
|
import os.path as osp
|
|
from scipy.io import loadmat
|
|
import numpy as np
|
|
import h5py
|
|
from scipy.misc import imsave
|
|
|
|
from torchreid.utils.iotools import mkdir_if_missing, write_json, read_json
|
|
from .bases import BaseImageDataset
|
|
|
|
|
|
class GRID(BaseImageDataset):
|
|
"""
|
|
GRID
|
|
|
|
Reference:
|
|
Loy et al. Multi-camera activity correlation analysis. CVPR 2009.
|
|
|
|
URL: http://personal.ie.cuhk.edu.hk/~ccloy/downloads_qmul_underground_reid.html
|
|
|
|
Dataset statistics:
|
|
# identities: 250
|
|
# images: 1275
|
|
# cameras: 8
|
|
"""
|
|
dataset_dir = 'grid'
|
|
|
|
def __init__(self, root='data', split_id=0, verbose=True, **kwargs):
|
|
super(GRID, self).__init__(root)
|
|
self.dataset_dir = osp.join(self.root, self.dataset_dir)
|
|
self.dataset_url = 'http://personal.ie.cuhk.edu.hk/~ccloy/files/datasets/underground_reid.zip'
|
|
self.probe_path = osp.join(self.dataset_dir, 'underground_reid', 'probe')
|
|
self.gallery_path = osp.join(self.dataset_dir, 'underground_reid', 'gallery')
|
|
self.split_mat_path = osp.join(self.dataset_dir, 'underground_reid', 'features_and_partitions.mat')
|
|
self.split_path = osp.join(self.dataset_dir, 'splits.json')
|
|
|
|
self._download_data()
|
|
self._check_before_run()
|
|
|
|
self._prepare_split()
|
|
splits = read_json(self.split_path)
|
|
if split_id >= len(splits):
|
|
raise ValueError('split_id exceeds range, received {}, but expected between 0 and {}'.format(split_id, len(splits)-1))
|
|
split = splits[split_id]
|
|
|
|
train = split['train']
|
|
query = split['query']
|
|
gallery = split['gallery']
|
|
|
|
train = [tuple(item) for item in train]
|
|
query = [tuple(item) for item in query]
|
|
gallery = [tuple(item) for item in gallery]
|
|
|
|
if verbose:
|
|
print('=> GRID loaded')
|
|
self.print_dataset_statistics(train, query, gallery)
|
|
|
|
self.train = train
|
|
self.query = query
|
|
self.gallery = gallery
|
|
|
|
self.num_train_pids, self.num_train_imgs, self.num_train_cams = self.get_imagedata_info(self.train)
|
|
self.num_query_pids, self.num_query_imgs, self.num_query_cams = self.get_imagedata_info(self.query)
|
|
self.num_gallery_pids, self.num_gallery_imgs, self.num_gallery_cams = self.get_imagedata_info(self.gallery)
|
|
|
|
def _check_before_run(self):
|
|
"""Check if all files are available before going deeper"""
|
|
if not osp.exists(self.dataset_dir):
|
|
raise RuntimeError('"{}" is not available'.format(self.dataset_dir))
|
|
if not osp.exists(self.probe_path):
|
|
raise RuntimeError('"{}" is not available'.format(self.probe_path))
|
|
if not osp.exists(self.gallery_path):
|
|
raise RuntimeError('"{}" is not available'.format(self.gallery_path))
|
|
if not osp.exists(self.split_mat_path):
|
|
raise RuntimeError('"{}" is not available'.format(self.split_mat_path))
|
|
|
|
def _download_data(self):
|
|
if osp.exists(self.dataset_dir):
|
|
print('This dataset has been downloaded.')
|
|
return
|
|
|
|
print('Creating directory {}'.format(self.dataset_dir))
|
|
mkdir_if_missing(self.dataset_dir)
|
|
fpath = osp.join(self.dataset_dir, osp.basename(self.dataset_url))
|
|
|
|
print('Downloading GRID dataset')
|
|
urllib.urlretrieve(self.dataset_url, fpath)
|
|
|
|
print('Extracting files')
|
|
zip_ref = zipfile.ZipFile(fpath, 'r')
|
|
zip_ref.extractall(self.dataset_dir)
|
|
zip_ref.close()
|
|
|
|
def _prepare_split(self):
|
|
if not osp.exists(self.split_path):
|
|
print('Creating 10 random splits')
|
|
split_mat = loadmat(self.split_mat_path)
|
|
trainIdxAll = split_mat['trainIdxAll'][0] # length = 10
|
|
probe_img_paths = sorted(glob.glob(osp.join(self.probe_path, '*.jpeg')))
|
|
gallery_img_paths = sorted(glob.glob(osp.join(self.gallery_path, '*.jpeg')))
|
|
|
|
splits = []
|
|
for split_idx in range(10):
|
|
train_idxs = trainIdxAll[split_idx][0][0][2][0].tolist()
|
|
assert len(train_idxs) == 125
|
|
idx2label = {idx: label for label, idx in enumerate(train_idxs)}
|
|
|
|
train, query, gallery = [], [], []
|
|
|
|
# processing probe folder
|
|
for img_path in probe_img_paths:
|
|
img_name = osp.basename(img_path)
|
|
img_idx = int(img_name.split('_')[0])
|
|
camid = int(img_name.split('_')[1]) - 1 # index starts from 0
|
|
if img_idx in train_idxs:
|
|
# add to train data
|
|
train.append((img_path, idx2label[img_idx], camid))
|
|
else:
|
|
# add to query data
|
|
query.append((img_path, img_idx, camid))
|
|
|
|
# process gallery folder
|
|
for img_path in gallery_img_paths:
|
|
img_name = osp.basename(img_path)
|
|
img_idx = int(img_name.split('_')[0])
|
|
camid = int(img_name.split('_')[1]) - 1 # index starts from 0
|
|
if img_idx in train_idxs:
|
|
# add to train data
|
|
train.append((img_path, idx2label[img_idx], camid))
|
|
else:
|
|
# add to gallery data
|
|
gallery.append((img_path, img_idx, camid))
|
|
|
|
split = {'train': train, 'query': query, 'gallery': gallery,
|
|
'num_train_pids': 125,
|
|
'num_query_pids': 125,
|
|
'num_gallery_pids': 900,
|
|
}
|
|
splits.append(split)
|
|
|
|
print('Totally {} splits are created'.format(len(splits)))
|
|
write_json(splits, self.split_path)
|
|
print('Split file saved to {}'.format(self.split_path))
|
|
|
|
print('Splits created')
|