83 lines
2.7 KiB
Python
83 lines
2.7 KiB
Python
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import os
|
|
import glob
|
|
import re
|
|
import sys
|
|
import urllib
|
|
import tarfile
|
|
import zipfile
|
|
import os.path as osp
|
|
from scipy.io import loadmat
|
|
import numpy as np
|
|
import h5py
|
|
from scipy.misc import imsave
|
|
import copy
|
|
|
|
from .bases import BaseImageDataset
|
|
|
|
|
|
class SenseReID(BaseImageDataset):
|
|
"""
|
|
SenseReID
|
|
|
|
This dataset is used for test purpose only.
|
|
|
|
Reference:
|
|
Zhao et al. Spindle Net: Person Re-identification with Human Body
|
|
Region Guided Feature Decomposition and Fusion. CVPR 2017.
|
|
|
|
URL: https://drive.google.com/file/d/0B56OfSrVI8hubVJLTzkwV2VaOWM/view
|
|
|
|
Dataset statistics:
|
|
- train: 0 ids, 0 images
|
|
- query: 522 ids, 1040 images
|
|
- gallery: 1717 ids, 3388 images
|
|
"""
|
|
dataset_dir = 'sensereid'
|
|
|
|
def __init__(self, root='data', verbose=True, **kwargs):
|
|
super(SenseReID, self).__init__(root)
|
|
self.dataset_dir = osp.join(self.root, self.dataset_dir)
|
|
self.query_dir = osp.join(self.dataset_dir, 'SenseReID', 'test_probe')
|
|
self.gallery_dir = osp.join(self.dataset_dir, 'SenseReID', 'test_gallery')
|
|
|
|
self._check_before_run()
|
|
|
|
query = self._process_dir(self.query_dir)
|
|
gallery = self._process_dir(self.gallery_dir)
|
|
|
|
if verbose:
|
|
print('=> SenseReID loaded (test only)')
|
|
self.print_dataset_statistics(query, query, gallery)
|
|
|
|
self.train = copy.deepcopy(query) # only used to initialize trainloader
|
|
self.query = query
|
|
self.gallery = gallery
|
|
|
|
self.num_train_pids, self.num_train_imgs, self.num_train_cams = self.get_imagedata_info(self.train)
|
|
self.num_query_pids, self.num_query_imgs, self.num_query_cams = self.get_imagedata_info(self.query)
|
|
self.num_gallery_pids, self.num_gallery_imgs, self.num_gallery_cams = self.get_imagedata_info(self.gallery)
|
|
|
|
def _check_before_run(self):
|
|
"""Check if all files are available before going deeper"""
|
|
if not osp.exists(self.dataset_dir):
|
|
raise RuntimeError('"{}" is not available'.format(self.dataset_dir))
|
|
if not osp.exists(self.query_dir):
|
|
raise RuntimeError('"{}" is not available'.format(self.query_dir))
|
|
if not osp.exists(self.gallery_dir):
|
|
raise RuntimeError('"{}" is not available'.format(self.gallery_dir))
|
|
|
|
def _process_dir(self, dir_path):
|
|
img_paths = glob.glob(osp.join(dir_path, '*.jpg'))
|
|
dataset = []
|
|
|
|
for img_path in img_paths:
|
|
img_name = osp.splitext(osp.basename(img_path))[0]
|
|
pid, camid = img_name.split('_')
|
|
pid, camid = int(pid), int(camid)
|
|
dataset.append((img_path, pid, camid))
|
|
|
|
return dataset |