167 lines
4.7 KiB
Python
167 lines
4.7 KiB
Python
import sys
|
|
import copy
|
|
import time
|
|
import os.path as osp
|
|
import argparse
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
import torchreid
|
|
from torchreid.utils import (
|
|
Logger, check_isfile, set_random_seed, collect_env_info,
|
|
resume_from_checkpoint, load_pretrained_weights, compute_model_complexity
|
|
)
|
|
|
|
from dml import ImageDMLEngine
|
|
from default_config import (
|
|
imagedata_kwargs, optimizer_kwargs, engine_run_kwargs, get_default_config,
|
|
lr_scheduler_kwargs
|
|
)
|
|
|
|
|
|
def reset_config(cfg, args):
|
|
if args.root:
|
|
cfg.data.root = args.root
|
|
if args.sources:
|
|
cfg.data.sources = args.sources
|
|
if args.targets:
|
|
cfg.data.targets = args.targets
|
|
if args.transforms:
|
|
cfg.data.transforms = args.transforms
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser(
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
)
|
|
parser.add_argument(
|
|
'--config-file', type=str, default='', help='path to config file'
|
|
)
|
|
parser.add_argument(
|
|
'-s',
|
|
'--sources',
|
|
type=str,
|
|
nargs='+',
|
|
help='source datasets (delimited by space)'
|
|
)
|
|
parser.add_argument(
|
|
'-t',
|
|
'--targets',
|
|
type=str,
|
|
nargs='+',
|
|
help='target datasets (delimited by space)'
|
|
)
|
|
parser.add_argument(
|
|
'--transforms', type=str, nargs='+', help='data augmentation'
|
|
)
|
|
parser.add_argument(
|
|
'--root', type=str, default='', help='path to data root'
|
|
)
|
|
parser.add_argument(
|
|
'opts',
|
|
default=None,
|
|
nargs=argparse.REMAINDER,
|
|
help='Modify config options using the command-line'
|
|
)
|
|
args = parser.parse_args()
|
|
|
|
cfg = get_default_config()
|
|
cfg.use_gpu = torch.cuda.is_available()
|
|
if args.config_file:
|
|
cfg.merge_from_file(args.config_file)
|
|
reset_config(cfg, args)
|
|
cfg.merge_from_list(args.opts)
|
|
set_random_seed(cfg.train.seed)
|
|
|
|
log_name = 'test.log' if cfg.test.evaluate else 'train.log'
|
|
log_name += time.strftime('-%Y-%m-%d-%H-%M-%S')
|
|
sys.stdout = Logger(osp.join(cfg.data.save_dir, log_name))
|
|
|
|
print('Show configuration\n{}\n'.format(cfg))
|
|
print('Collecting env info ...')
|
|
print('** System info **\n{}\n'.format(collect_env_info()))
|
|
|
|
if cfg.use_gpu:
|
|
torch.backends.cudnn.benchmark = True
|
|
|
|
datamanager = torchreid.data.ImageDataManager(**imagedata_kwargs(cfg))
|
|
|
|
print('Building model-1: {}'.format(cfg.model.name))
|
|
model1 = torchreid.models.build_model(
|
|
name=cfg.model.name,
|
|
num_classes=datamanager.num_train_pids,
|
|
loss=cfg.loss.name,
|
|
pretrained=cfg.model.pretrained,
|
|
use_gpu=cfg.use_gpu
|
|
)
|
|
num_params, flops = compute_model_complexity(
|
|
model1, (1, 3, cfg.data.height, cfg.data.width)
|
|
)
|
|
print('Model complexity: params={:,} flops={:,}'.format(num_params, flops))
|
|
|
|
print('Copying model-1 to model-2')
|
|
model2 = copy.deepcopy(model1)
|
|
|
|
if cfg.model.load_weights1 and check_isfile(cfg.model.load_weights1):
|
|
load_pretrained_weights(model1, cfg.model.load_weights1)
|
|
|
|
if cfg.model.load_weights2 and check_isfile(cfg.model.load_weights2):
|
|
load_pretrained_weights(model2, cfg.model.load_weights2)
|
|
|
|
if cfg.use_gpu:
|
|
model1 = nn.DataParallel(model1).cuda()
|
|
model2 = nn.DataParallel(model2).cuda()
|
|
|
|
optimizer1 = torchreid.optim.build_optimizer(
|
|
model1, **optimizer_kwargs(cfg)
|
|
)
|
|
scheduler1 = torchreid.optim.build_lr_scheduler(
|
|
optimizer1, **lr_scheduler_kwargs(cfg)
|
|
)
|
|
|
|
optimizer2 = torchreid.optim.build_optimizer(
|
|
model2, **optimizer_kwargs(cfg)
|
|
)
|
|
scheduler2 = torchreid.optim.build_lr_scheduler(
|
|
optimizer2, **lr_scheduler_kwargs(cfg)
|
|
)
|
|
|
|
if cfg.model.resume1 and check_isfile(cfg.model.resume1):
|
|
cfg.train.start_epoch = resume_from_checkpoint(
|
|
cfg.model.resume1,
|
|
model1,
|
|
optimizer=optimizer1,
|
|
scheduler=scheduler1
|
|
)
|
|
|
|
if cfg.model.resume2 and check_isfile(cfg.model.resume2):
|
|
resume_from_checkpoint(
|
|
cfg.model.resume2,
|
|
model2,
|
|
optimizer=optimizer2,
|
|
scheduler=scheduler2
|
|
)
|
|
|
|
print('Building DML-engine for image-reid')
|
|
engine = ImageDMLEngine(
|
|
datamanager,
|
|
model1,
|
|
optimizer1,
|
|
scheduler1,
|
|
model2,
|
|
optimizer2,
|
|
scheduler2,
|
|
margin=cfg.loss.triplet.margin,
|
|
weight_t=cfg.loss.triplet.weight_t,
|
|
weight_x=cfg.loss.triplet.weight_x,
|
|
weight_ml=cfg.loss.dml.weight_ml,
|
|
use_gpu=cfg.use_gpu,
|
|
label_smooth=cfg.loss.softmax.label_smooth,
|
|
deploy=cfg.model.deploy
|
|
)
|
|
engine.run(**engine_run_kwargs(cfg))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|