deep-person-reid/projects/DML/main.py

167 lines
4.7 KiB
Python

import sys
import copy
import time
import os.path as osp
import argparse
import torch
import torch.nn as nn
import torchreid
from torchreid.utils import (
Logger, check_isfile, set_random_seed, collect_env_info,
resume_from_checkpoint, load_pretrained_weights, compute_model_complexity
)
from dml import ImageDMLEngine
from default_config import (
imagedata_kwargs, optimizer_kwargs, engine_run_kwargs, get_default_config,
lr_scheduler_kwargs
)
def reset_config(cfg, args):
if args.root:
cfg.data.root = args.root
if args.sources:
cfg.data.sources = args.sources
if args.targets:
cfg.data.targets = args.targets
if args.transforms:
cfg.data.transforms = args.transforms
def main():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
'--config-file', type=str, default='', help='path to config file'
)
parser.add_argument(
'-s',
'--sources',
type=str,
nargs='+',
help='source datasets (delimited by space)'
)
parser.add_argument(
'-t',
'--targets',
type=str,
nargs='+',
help='target datasets (delimited by space)'
)
parser.add_argument(
'--transforms', type=str, nargs='+', help='data augmentation'
)
parser.add_argument(
'--root', type=str, default='', help='path to data root'
)
parser.add_argument(
'opts',
default=None,
nargs=argparse.REMAINDER,
help='Modify config options using the command-line'
)
args = parser.parse_args()
cfg = get_default_config()
cfg.use_gpu = torch.cuda.is_available()
if args.config_file:
cfg.merge_from_file(args.config_file)
reset_config(cfg, args)
cfg.merge_from_list(args.opts)
set_random_seed(cfg.train.seed)
log_name = 'test.log' if cfg.test.evaluate else 'train.log'
log_name += time.strftime('-%Y-%m-%d-%H-%M-%S')
sys.stdout = Logger(osp.join(cfg.data.save_dir, log_name))
print('Show configuration\n{}\n'.format(cfg))
print('Collecting env info ...')
print('** System info **\n{}\n'.format(collect_env_info()))
if cfg.use_gpu:
torch.backends.cudnn.benchmark = True
datamanager = torchreid.data.ImageDataManager(**imagedata_kwargs(cfg))
print('Building model-1: {}'.format(cfg.model.name))
model1 = torchreid.models.build_model(
name=cfg.model.name,
num_classes=datamanager.num_train_pids,
loss=cfg.loss.name,
pretrained=cfg.model.pretrained,
use_gpu=cfg.use_gpu
)
num_params, flops = compute_model_complexity(
model1, (1, 3, cfg.data.height, cfg.data.width)
)
print('Model complexity: params={:,} flops={:,}'.format(num_params, flops))
print('Copying model-1 to model-2')
model2 = copy.deepcopy(model1)
if cfg.model.load_weights1 and check_isfile(cfg.model.load_weights1):
load_pretrained_weights(model1, cfg.model.load_weights1)
if cfg.model.load_weights2 and check_isfile(cfg.model.load_weights2):
load_pretrained_weights(model2, cfg.model.load_weights2)
if cfg.use_gpu:
model1 = nn.DataParallel(model1).cuda()
model2 = nn.DataParallel(model2).cuda()
optimizer1 = torchreid.optim.build_optimizer(
model1, **optimizer_kwargs(cfg)
)
scheduler1 = torchreid.optim.build_lr_scheduler(
optimizer1, **lr_scheduler_kwargs(cfg)
)
optimizer2 = torchreid.optim.build_optimizer(
model2, **optimizer_kwargs(cfg)
)
scheduler2 = torchreid.optim.build_lr_scheduler(
optimizer2, **lr_scheduler_kwargs(cfg)
)
if cfg.model.resume1 and check_isfile(cfg.model.resume1):
cfg.train.start_epoch = resume_from_checkpoint(
cfg.model.resume1,
model1,
optimizer=optimizer1,
scheduler=scheduler1
)
if cfg.model.resume2 and check_isfile(cfg.model.resume2):
resume_from_checkpoint(
cfg.model.resume2,
model2,
optimizer=optimizer2,
scheduler=scheduler2
)
print('Building DML-engine for image-reid')
engine = ImageDMLEngine(
datamanager,
model1,
optimizer1,
scheduler1,
model2,
optimizer2,
scheduler2,
margin=cfg.loss.triplet.margin,
weight_t=cfg.loss.triplet.weight_t,
weight_x=cfg.loss.triplet.weight_x,
weight_ml=cfg.loss.dml.weight_ml,
use_gpu=cfg.use_gpu,
label_smooth=cfg.loss.softmax.label_smooth,
deploy=cfg.model.deploy
)
engine.run(**engine_run_kwargs(cfg))
if __name__ == '__main__':
main()