deep-person-reid/projects/OSNet_AIN/osnet_search.py

585 lines
18 KiB
Python

from __future__ import division, absolute_import
import torch
from torch import nn
from torch.nn import functional as F
EPS = 1e-12
NORM_AFFINE = False # enable affine transformations for normalization layer
##########
# Basic layers
##########
class IBN(nn.Module):
"""Instance + Batch Normalization."""
def __init__(self, num_channels):
super(IBN, self).__init__()
half1 = int(num_channels / 2)
self.half = half1
half2 = num_channels - half1
self.IN = nn.InstanceNorm2d(half1, affine=NORM_AFFINE)
self.BN = nn.BatchNorm2d(half2, affine=NORM_AFFINE)
def forward(self, x):
split = torch.split(x, self.half, 1)
out1 = self.IN(split[0].contiguous())
out2 = self.BN(split[1].contiguous())
return torch.cat((out1, out2), 1)
class ConvLayer(nn.Module):
"""Convolution layer (conv + bn + relu)."""
def __init__(
self,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
groups=1,
IN=False
):
super(ConvLayer, self).__init__()
self.conv = nn.Conv2d(
in_channels,
out_channels,
kernel_size,
stride=stride,
padding=padding,
bias=False,
groups=groups
)
if IN:
self.bn = nn.InstanceNorm2d(out_channels, affine=NORM_AFFINE)
else:
self.bn = nn.BatchNorm2d(out_channels, affine=NORM_AFFINE)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
return self.relu(x)
class Conv1x1(nn.Module):
"""1x1 convolution + bn + relu."""
def __init__(
self, in_channels, out_channels, stride=1, groups=1, ibn=False
):
super(Conv1x1, self).__init__()
self.conv = nn.Conv2d(
in_channels,
out_channels,
1,
stride=stride,
padding=0,
bias=False,
groups=groups
)
if ibn:
self.bn = IBN(out_channels)
else:
self.bn = nn.BatchNorm2d(out_channels, affine=NORM_AFFINE)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
return self.relu(x)
class Conv1x1Linear(nn.Module):
"""1x1 convolution + bn (w/o non-linearity)."""
def __init__(self, in_channels, out_channels, stride=1, bn=True):
super(Conv1x1Linear, self).__init__()
self.conv = nn.Conv2d(
in_channels, out_channels, 1, stride=stride, padding=0, bias=False
)
self.bn = None
if bn:
self.bn = nn.BatchNorm2d(out_channels, affine=NORM_AFFINE)
def forward(self, x):
x = self.conv(x)
if self.bn is not None:
x = self.bn(x)
return x
class Conv3x3(nn.Module):
"""3x3 convolution + bn + relu."""
def __init__(self, in_channels, out_channels, stride=1, groups=1):
super(Conv3x3, self).__init__()
self.conv = nn.Conv2d(
in_channels,
out_channels,
3,
stride=stride,
padding=1,
bias=False,
groups=groups
)
self.bn = nn.BatchNorm2d(out_channels, affine=NORM_AFFINE)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
return self.relu(x)
class LightConv3x3(nn.Module):
"""Lightweight 3x3 convolution.
1x1 (linear) + dw 3x3 (nonlinear).
"""
def __init__(self, in_channels, out_channels):
super(LightConv3x3, self).__init__()
self.conv1 = nn.Conv2d(
in_channels, out_channels, 1, stride=1, padding=0, bias=False
)
self.conv2 = nn.Conv2d(
out_channels,
out_channels,
3,
stride=1,
padding=1,
bias=False,
groups=out_channels
)
self.bn = nn.BatchNorm2d(out_channels, affine=NORM_AFFINE)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = self.bn(x)
return self.relu(x)
class LightConvStream(nn.Module):
"""Lightweight convolution stream."""
def __init__(self, in_channels, out_channels, depth):
super(LightConvStream, self).__init__()
assert depth >= 1, 'depth must be equal to or larger than 1, but got {}'.format(
depth
)
layers = []
layers += [LightConv3x3(in_channels, out_channels)]
for i in range(depth - 1):
layers += [LightConv3x3(out_channels, out_channels)]
self.layers = nn.Sequential(*layers)
def forward(self, x):
return self.layers(x)
##########
# Building blocks for omni-scale feature learning
##########
class ChannelGate(nn.Module):
"""A mini-network that generates channel-wise gates conditioned on input tensor."""
def __init__(
self,
in_channels,
num_gates=None,
return_gates=False,
gate_activation='sigmoid',
reduction=16,
layer_norm=False
):
super(ChannelGate, self).__init__()
if num_gates is None:
num_gates = in_channels
self.return_gates = return_gates
self.global_avgpool = nn.AdaptiveAvgPool2d(1)
self.fc1 = nn.Conv2d(
in_channels,
in_channels // reduction,
kernel_size=1,
bias=True,
padding=0
)
self.norm1 = None
if layer_norm:
self.norm1 = nn.LayerNorm((in_channels // reduction, 1, 1))
self.relu = nn.ReLU(inplace=True)
self.fc2 = nn.Conv2d(
in_channels // reduction,
num_gates,
kernel_size=1,
bias=True,
padding=0
)
if gate_activation == 'sigmoid':
self.gate_activation = nn.Sigmoid()
elif gate_activation == 'relu':
self.gate_activation = nn.ReLU(inplace=True)
elif gate_activation == 'linear':
self.gate_activation = None
else:
raise RuntimeError(
"Unknown gate activation: {}".format(gate_activation)
)
def forward(self, x):
input = x
x = self.global_avgpool(x)
x = self.fc1(x)
if self.norm1 is not None:
x = self.norm1(x)
x = self.relu(x)
x = self.fc2(x)
if self.gate_activation is not None:
x = self.gate_activation(x)
if self.return_gates:
return x
return input * x
class OSBlock(nn.Module):
"""Omni-scale feature learning block."""
def __init__(self, in_channels, out_channels, reduction=4, T=4, **kwargs):
super(OSBlock, self).__init__()
assert T >= 1
assert out_channels >= reduction and out_channels % reduction == 0
mid_channels = out_channels // reduction
self.conv1 = Conv1x1(in_channels, mid_channels)
self.conv2 = nn.ModuleList()
for t in range(1, T + 1):
self.conv2 += [LightConvStream(mid_channels, mid_channels, t)]
self.gate = ChannelGate(mid_channels)
self.conv3 = Conv1x1Linear(mid_channels, out_channels)
self.downsample = None
if in_channels != out_channels:
self.downsample = Conv1x1Linear(in_channels, out_channels)
def forward(self, x):
identity = x
x1 = self.conv1(x)
x2 = 0
for conv2_t in self.conv2:
x2_t = conv2_t(x1)
x2 = x2 + self.gate(x2_t)
x3 = self.conv3(x2)
if self.downsample is not None:
identity = self.downsample(identity)
out = x3 + identity
return F.relu(out)
class OSBlockINv1(nn.Module):
"""Omni-scale feature learning block with instance normalization."""
def __init__(self, in_channels, out_channels, reduction=4, T=4, **kwargs):
super(OSBlockINv1, self).__init__()
assert T >= 1
assert out_channels >= reduction and out_channels % reduction == 0
mid_channels = out_channels // reduction
self.conv1 = Conv1x1(in_channels, mid_channels)
self.conv2 = nn.ModuleList()
for t in range(1, T + 1):
self.conv2 += [LightConvStream(mid_channels, mid_channels, t)]
self.gate = ChannelGate(mid_channels)
self.conv3 = Conv1x1Linear(mid_channels, out_channels, bn=False)
self.downsample = None
if in_channels != out_channels:
self.downsample = Conv1x1Linear(in_channels, out_channels)
self.IN = nn.InstanceNorm2d(out_channels, affine=NORM_AFFINE)
def forward(self, x):
identity = x
x1 = self.conv1(x)
x2 = 0
for conv2_t in self.conv2:
x2_t = conv2_t(x1)
x2 = x2 + self.gate(x2_t)
x3 = self.conv3(x2)
x3 = self.IN(x3) # IN inside residual
if self.downsample is not None:
identity = self.downsample(identity)
out = x3 + identity
return F.relu(out)
class OSBlockINv2(nn.Module):
"""Omni-scale feature learning block with instance normalization."""
def __init__(self, in_channels, out_channels, reduction=4, T=4, **kwargs):
super(OSBlockINv2, self).__init__()
assert T >= 1
assert out_channels >= reduction and out_channels % reduction == 0
mid_channels = out_channels // reduction
self.conv1 = Conv1x1(in_channels, mid_channels)
self.conv2 = nn.ModuleList()
for t in range(1, T + 1):
self.conv2 += [LightConvStream(mid_channels, mid_channels, t)]
self.gate = ChannelGate(mid_channels)
self.conv3 = Conv1x1Linear(mid_channels, out_channels)
self.downsample = None
if in_channels != out_channels:
self.downsample = Conv1x1Linear(in_channels, out_channels)
self.IN = nn.InstanceNorm2d(out_channels, affine=NORM_AFFINE)
def forward(self, x):
identity = x
x1 = self.conv1(x)
x2 = 0
for conv2_t in self.conv2:
x2_t = conv2_t(x1)
x2 = x2 + self.gate(x2_t)
x3 = self.conv3(x2)
if self.downsample is not None:
identity = self.downsample(identity)
out = x3 + identity
out = self.IN(out) # IN outside residual
return F.relu(out)
class OSBlockINv3(nn.Module):
"""Omni-scale feature learning block with instance normalization."""
def __init__(self, in_channels, out_channels, reduction=4, T=4, **kwargs):
super(OSBlockINv3, self).__init__()
assert T >= 1
assert out_channels >= reduction and out_channels % reduction == 0
mid_channels = out_channels // reduction
self.conv1 = Conv1x1(in_channels, mid_channels)
self.conv2 = nn.ModuleList()
for t in range(1, T + 1):
self.conv2 += [LightConvStream(mid_channels, mid_channels, t)]
self.gate = ChannelGate(mid_channels)
self.conv3 = Conv1x1Linear(mid_channels, out_channels, bn=False)
self.downsample = None
if in_channels != out_channels:
self.downsample = Conv1x1Linear(in_channels, out_channels)
self.IN_in = nn.InstanceNorm2d(out_channels, affine=NORM_AFFINE)
self.IN_out = nn.InstanceNorm2d(out_channels, affine=NORM_AFFINE)
def forward(self, x):
identity = x
x1 = self.conv1(x)
x2 = 0
for conv2_t in self.conv2:
x2_t = conv2_t(x1)
x2 = x2 + self.gate(x2_t)
x3 = self.conv3(x2)
x3 = self.IN_in(x3) # inside residual
if self.downsample is not None:
identity = self.downsample(identity)
out = x3 + identity
out = self.IN_out(out) # IN outside residual
return F.relu(out)
class NASBlock(nn.Module):
"""Neural architecture search layer."""
def __init__(self, in_channels, out_channels, search_space=None):
super(NASBlock, self).__init__()
self._is_child_graph = False
self.search_space = search_space
if self.search_space is None:
raise ValueError('search_space is None')
self.os_block = nn.ModuleList()
for block in self.search_space:
self.os_block += [block(in_channels, out_channels)]
self.weights = nn.Parameter(torch.ones(len(self.search_space)))
def build_child_graph(self):
if self._is_child_graph:
raise RuntimeError('build_child_graph() can only be called once')
idx = self.weights.data.max(dim=0)[1].item()
self.os_block = self.os_block[idx]
self.weights = None
self._is_child_graph = True
return self.search_space[idx]
def forward(self, x, lmda=1.):
if self._is_child_graph:
return self.os_block(x)
uniform = torch.rand_like(self.weights)
gumbel = -torch.log(-torch.log(uniform + EPS))
nonneg_weights = F.relu(self.weights)
logits = torch.log(nonneg_weights + EPS) + gumbel
exp = torch.exp(logits / lmda)
weights_softmax = exp / (exp.sum() + EPS)
output = 0
for i, weight in enumerate(weights_softmax):
output = output + weight * self.os_block[i](x)
return output
##########
# Network architecture
##########
class OSNet(nn.Module):
"""Omni-Scale Network.
Reference:
- Zhou et al. Omni-Scale Feature Learning for Person Re-Identification. ICCV, 2019.
- Zhou et al. Learning Generalisable Omni-Scale Representations
for Person Re-Identification. arXiv preprint, 2019.
"""
def __init__(
self,
num_classes,
blocks,
layers,
channels,
feature_dim=512,
loss='softmax',
search_space=None,
**kwargs
):
super(OSNet, self).__init__()
num_blocks = len(blocks)
assert num_blocks == len(layers)
assert num_blocks == len(channels) - 1
# no matter what loss is specified, the model only returns the ID predictions
self.loss = loss
self.feature_dim = feature_dim
# convolutional backbone
self.conv1 = ConvLayer(3, channels[0], 7, stride=2, padding=3, IN=True)
self.maxpool = nn.MaxPool2d(3, stride=2, padding=1)
self.conv2 = self._make_layer(
blocks[0], layers[0], channels[0], channels[1], search_space
)
self.pool2 = nn.Sequential(
Conv1x1(channels[1], channels[1]), nn.AvgPool2d(2, stride=2)
)
self.conv3 = self._make_layer(
blocks[1], layers[1], channels[1], channels[2], search_space
)
self.pool3 = nn.Sequential(
Conv1x1(channels[2], channels[2]), nn.AvgPool2d(2, stride=2)
)
self.conv4 = self._make_layer(
blocks[2], layers[2], channels[2], channels[3], search_space
)
self.conv5 = Conv1x1(channels[3], channels[3])
self.global_avgpool = nn.AdaptiveAvgPool2d(1)
# fully connected layer
self.fc = self._construct_fc_layer(
self.feature_dim, channels[3], dropout_p=None
)
# identity classification layer
self.classifier = nn.Linear(self.feature_dim, num_classes)
def _make_layer(
self, block, layer, in_channels, out_channels, search_space
):
layers = nn.ModuleList()
layers += [block(in_channels, out_channels, search_space=search_space)]
for i in range(1, layer):
layers += [
block(out_channels, out_channels, search_space=search_space)
]
return layers
def _construct_fc_layer(self, fc_dims, input_dim, dropout_p=None):
if fc_dims is None or fc_dims < 0:
self.feature_dim = input_dim
return None
if isinstance(fc_dims, int):
fc_dims = [fc_dims]
layers = []
for dim in fc_dims:
layers.append(nn.Linear(input_dim, dim))
layers.append(nn.BatchNorm1d(dim, affine=NORM_AFFINE))
layers.append(nn.ReLU(inplace=True))
if dropout_p is not None:
layers.append(nn.Dropout(p=dropout_p))
input_dim = dim
self.feature_dim = fc_dims[-1]
return nn.Sequential(*layers)
def build_child_graph(self):
print('Building child graph')
for i, conv in enumerate(self.conv2):
block = conv.build_child_graph()
print('- conv2-{} Block={}'.format(i + 1, block.__name__))
for i, conv in enumerate(self.conv3):
block = conv.build_child_graph()
print('- conv3-{} Block={}'.format(i + 1, block.__name__))
for i, conv in enumerate(self.conv4):
block = conv.build_child_graph()
print('- conv4-{} Block={}'.format(i + 1, block.__name__))
def featuremaps(self, x, lmda):
x = self.conv1(x)
x = self.maxpool(x)
for conv in self.conv2:
x = conv(x, lmda)
x = self.pool2(x)
for conv in self.conv3:
x = conv(x, lmda)
x = self.pool3(x)
for conv in self.conv4:
x = conv(x, lmda)
return self.conv5(x)
def forward(self, x, lmda=1., return_featuremaps=False):
# lmda (float): temperature parameter for concrete distribution
x = self.featuremaps(x, lmda)
if return_featuremaps:
return x
v = self.global_avgpool(x)
v = v.view(v.size(0), -1)
if self.fc is not None:
v = self.fc(v)
if not self.training:
return v
return self.classifier(v)
##########
# Instantiation
##########
def osnet_nas(num_classes=1000, loss='softmax', **kwargs):
# standard size (width x1.0)
return OSNet(
num_classes,
blocks=[NASBlock, NASBlock, NASBlock],
layers=[2, 2, 2],
channels=[64, 256, 384, 512],
loss=loss,
search_space=[OSBlock, OSBlockINv1, OSBlockINv2, OSBlockINv3],
**kwargs
)
__NAS_models = {'osnet_nas': osnet_nas}
def build_model(name, num_classes=100):
avai_models = list(__NAS_models.keys())
if name not in avai_models:
raise KeyError(
'Unknown model: {}. Must be one of {}'.format(name, avai_models)
)
return __NAS_models[name](num_classes=num_classes)