185 lines
5.5 KiB
Python
185 lines
5.5 KiB
Python
import sys
|
|
import time
|
|
import os.path as osp
|
|
import argparse
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
import torchreid
|
|
from torchreid.utils import (
|
|
Logger, check_isfile, set_random_seed, collect_env_info,
|
|
resume_from_checkpoint, load_pretrained_weights, compute_model_complexity
|
|
)
|
|
|
|
from default_config import (
|
|
imagedata_kwargs, optimizer_kwargs, videodata_kwargs, engine_run_kwargs,
|
|
get_default_config, lr_scheduler_kwargs
|
|
)
|
|
|
|
|
|
def build_datamanager(cfg):
|
|
if cfg.data.type == 'image':
|
|
return torchreid.data.ImageDataManager(**imagedata_kwargs(cfg))
|
|
else:
|
|
return torchreid.data.VideoDataManager(**videodata_kwargs(cfg))
|
|
|
|
|
|
def build_engine(cfg, datamanager, model, optimizer, scheduler):
|
|
if cfg.data.type == 'image':
|
|
if cfg.loss.name == 'softmax':
|
|
engine = torchreid.engine.ImageSoftmaxEngine(
|
|
datamanager,
|
|
model,
|
|
optimizer=optimizer,
|
|
scheduler=scheduler,
|
|
use_gpu=cfg.use_gpu,
|
|
label_smooth=cfg.loss.softmax.label_smooth
|
|
)
|
|
|
|
else:
|
|
engine = torchreid.engine.ImageTripletEngine(
|
|
datamanager,
|
|
model,
|
|
optimizer=optimizer,
|
|
margin=cfg.loss.triplet.margin,
|
|
weight_t=cfg.loss.triplet.weight_t,
|
|
weight_x=cfg.loss.triplet.weight_x,
|
|
scheduler=scheduler,
|
|
use_gpu=cfg.use_gpu,
|
|
label_smooth=cfg.loss.softmax.label_smooth
|
|
)
|
|
|
|
else:
|
|
if cfg.loss.name == 'softmax':
|
|
engine = torchreid.engine.VideoSoftmaxEngine(
|
|
datamanager,
|
|
model,
|
|
optimizer=optimizer,
|
|
scheduler=scheduler,
|
|
use_gpu=cfg.use_gpu,
|
|
label_smooth=cfg.loss.softmax.label_smooth,
|
|
pooling_method=cfg.video.pooling_method
|
|
)
|
|
|
|
else:
|
|
engine = torchreid.engine.VideoTripletEngine(
|
|
datamanager,
|
|
model,
|
|
optimizer=optimizer,
|
|
margin=cfg.loss.triplet.margin,
|
|
weight_t=cfg.loss.triplet.weight_t,
|
|
weight_x=cfg.loss.triplet.weight_x,
|
|
scheduler=scheduler,
|
|
use_gpu=cfg.use_gpu,
|
|
label_smooth=cfg.loss.softmax.label_smooth
|
|
)
|
|
|
|
return engine
|
|
|
|
|
|
def reset_config(cfg, args):
|
|
if args.root:
|
|
cfg.data.root = args.root
|
|
if args.sources:
|
|
cfg.data.sources = args.sources
|
|
if args.targets:
|
|
cfg.data.targets = args.targets
|
|
if args.transforms:
|
|
cfg.data.transforms = args.transforms
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser(
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
)
|
|
parser.add_argument(
|
|
'--config-file', type=str, default='', help='path to config file'
|
|
)
|
|
parser.add_argument(
|
|
'-s',
|
|
'--sources',
|
|
type=str,
|
|
nargs='+',
|
|
help='source datasets (delimited by space)'
|
|
)
|
|
parser.add_argument(
|
|
'-t',
|
|
'--targets',
|
|
type=str,
|
|
nargs='+',
|
|
help='target datasets (delimited by space)'
|
|
)
|
|
parser.add_argument(
|
|
'--transforms', type=str, nargs='+', help='data augmentation'
|
|
)
|
|
parser.add_argument(
|
|
'--root', type=str, default='', help='path to data root'
|
|
)
|
|
parser.add_argument(
|
|
'opts',
|
|
default=None,
|
|
nargs=argparse.REMAINDER,
|
|
help='Modify config options using the command-line'
|
|
)
|
|
args = parser.parse_args()
|
|
|
|
cfg = get_default_config()
|
|
cfg.use_gpu = torch.cuda.is_available()
|
|
if args.config_file:
|
|
cfg.merge_from_file(args.config_file)
|
|
reset_config(cfg, args)
|
|
cfg.merge_from_list(args.opts)
|
|
set_random_seed(cfg.train.seed)
|
|
|
|
log_name = 'test.log' if cfg.test.evaluate else 'train.log'
|
|
log_name += time.strftime('-%Y-%m-%d-%H-%M-%S')
|
|
sys.stdout = Logger(osp.join(cfg.data.save_dir, log_name))
|
|
|
|
print('Show configuration\n{}\n'.format(cfg))
|
|
print('Collecting env info ...')
|
|
print('** System info **\n{}\n'.format(collect_env_info()))
|
|
|
|
if cfg.use_gpu:
|
|
torch.backends.cudnn.benchmark = True
|
|
|
|
datamanager = build_datamanager(cfg)
|
|
|
|
print('Building model: {}'.format(cfg.model.name))
|
|
model = torchreid.models.build_model(
|
|
name=cfg.model.name,
|
|
num_classes=datamanager.num_train_pids,
|
|
loss=cfg.loss.name,
|
|
pretrained=cfg.model.pretrained,
|
|
use_gpu=cfg.use_gpu
|
|
)
|
|
num_params, flops = compute_model_complexity(
|
|
model, (1, 3, cfg.data.height, cfg.data.width)
|
|
)
|
|
print('Model complexity: params={:,} flops={:,}'.format(num_params, flops))
|
|
|
|
if cfg.model.load_weights and check_isfile(cfg.model.load_weights):
|
|
load_pretrained_weights(model, cfg.model.load_weights)
|
|
|
|
if cfg.use_gpu:
|
|
model = nn.DataParallel(model).cuda()
|
|
|
|
optimizer = torchreid.optim.build_optimizer(model, **optimizer_kwargs(cfg))
|
|
scheduler = torchreid.optim.build_lr_scheduler(
|
|
optimizer, **lr_scheduler_kwargs(cfg)
|
|
)
|
|
|
|
if cfg.model.resume and check_isfile(cfg.model.resume):
|
|
cfg.train.start_epoch = resume_from_checkpoint(
|
|
cfg.model.resume, model, optimizer=optimizer, scheduler=scheduler
|
|
)
|
|
|
|
print(
|
|
'Building {}-engine for {}-reid'.format(cfg.loss.name, cfg.data.type)
|
|
)
|
|
engine = build_engine(cfg, datamanager, model, optimizer, scheduler)
|
|
engine.run(**engine_run_kwargs(cfg))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|