deep-person-reid/torchreid/transforms.py

121 lines
4.1 KiB
Python

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from PIL import Image
import random
import numpy as np
import math
import torch
from torchvision.transforms import *
class Random2DTranslation(object):
"""
With a probability, first increase image size to (1 + 1/8), and then perform random crop.
Args:
- height (int): target image height.
- width (int): target image width.
- p (float): probability of performing this transformation. Default: 0.5.
"""
def __init__(self, height, width, p=0.5, interpolation=Image.BILINEAR):
self.height = height
self.width = width
self.p = p
self.interpolation = interpolation
def __call__(self, img):
"""
Args:
- img (PIL Image): Image to be cropped.
"""
if random.uniform(0, 1) > self.p:
return img.resize((self.width, self.height), self.interpolation)
new_width, new_height = int(round(self.width * 1.125)), int(round(self.height * 1.125))
resized_img = img.resize((new_width, new_height), self.interpolation)
x_maxrange = new_width - self.width
y_maxrange = new_height - self.height
x1 = int(round(random.uniform(0, x_maxrange)))
y1 = int(round(random.uniform(0, y_maxrange)))
croped_img = resized_img.crop((x1, y1, x1 + self.width, y1 + self.height))
return croped_img
class RandomErasing(object):
'''
Class that performs Random Erasing in Random Erasing Data Augmentation by Zhong et al.
-------------------------------------------------------------------------------------
probability: The probability that the operation will be performed.
sl: min erasing area
sh: max erasing area
r1: min aspect ratio
mean: erasing value
-------------------------------------------------------------------------------------
Origin: https://github.com/zhunzhong07/Random-Erasing
'''
def __init__(self, probability = 0.5, sl = 0.02, sh = 0.4, r1 = 0.3, mean=[0.4914, 0.4822, 0.4465]):
self.probability = probability
self.mean = mean
self.sl = sl
self.sh = sh
self.r1 = r1
def __call__(self, img):
if random.uniform(0, 1) > self.probability:
return img
for attempt in range(100):
area = img.size()[1] * img.size()[2]
target_area = random.uniform(self.sl, self.sh) * area
aspect_ratio = random.uniform(self.r1, 1/self.r1)
h = int(round(math.sqrt(target_area * aspect_ratio)))
w = int(round(math.sqrt(target_area / aspect_ratio)))
if w < img.size()[2] and h < img.size()[1]:
x1 = random.randint(0, img.size()[1] - h)
y1 = random.randint(0, img.size()[2] - w)
if img.size()[0] == 3:
img[0, x1:x1+h, y1:y1+w] = self.mean[0]
img[1, x1:x1+h, y1:y1+w] = self.mean[1]
img[2, x1:x1+h, y1:y1+w] = self.mean[2]
else:
img[0, x1:x1+h, y1:y1+w] = self.mean[0]
return img
return img
def build_transforms(height,
width,
augdata_re=False, # use random erasing for data augmentation
**kwargs):
# use imagenet mean and std as default
# TODO: compute dataset-specific mean and std
imagenet_mean = [0.485, 0.456, 0.406]
imagenet_std = [0.229, 0.224, 0.225]
normalize = Normalize(mean=imagenet_mean, std=imagenet_std)
# build train transformations
transform_train = []
transform_train += [Random2DTranslation(height, width)]
transform_train += [RandomHorizontalFlip()]
transform_train += [ToTensor()]
transform_train += [normalize]
if augdata_re:
transform_train += [RandomErasing()]
transform_train = Compose(transform_train)
# build test transformations
transform_test = Compose([
Resize((height, width)),
ToTensor(),
normalize,
])
return transform_train, transform_test