deep-person-reid/torchreid/eval_cylib/eval_metrics_cy.pyx

234 lines
8.4 KiB
Cython

from __future__ import print_function
from __future__ import division
import numpy as np
from collections import defaultdict
import random
# Main interface
cpdef evaluate_cy(distmat, q_pids, g_pids, q_camids, g_camids, max_rank, use_metric_cuhk03=False):
distmat = np.asarray(distmat, dtype=np.float32)
q_pids = np.asarray(q_pids, dtype=np.int64)
g_pids = np.asarray(g_pids, dtype=np.int64)
q_camids = np.asarray(q_camids, dtype=np.int64)
g_camids = np.asarray(g_camids, dtype=np.int64)
if use_metric_cuhk03:
return eval_cuhk03_cy(distmat, q_pids, g_pids, q_camids, g_camids, max_rank)
return eval_market1501_cy(distmat, q_pids, g_pids, q_camids, g_camids, max_rank)
cpdef eval_cuhk03_cy(float[:,:] distmat, long[:] q_pids, long[:]g_pids,
long[:]q_camids, long[:]g_camids, long max_rank):
cdef long num_q = distmat.shape[0]
cdef long num_g = distmat.shape[1]
if num_g < max_rank:
max_rank = num_g
print("Note: number of gallery samples is quite small, got {}".format(num_g))
cdef:
long num_repeats = 10
long[:,:] indices = np.argsort(distmat, axis=1)
long[:,:] matches = (np.asarray(g_pids)[np.asarray(indices)] == np.asarray(q_pids)[:, np.newaxis]).astype(np.int64)
float[:,:] all_cmc = np.zeros((num_q, max_rank), dtype=np.float32)
float[:] all_AP = np.zeros(num_q, dtype=np.float32)
float num_valid_q = 0. # number of valid query
long q_idx, q_pid, q_camid, g_idx
long[:] order = np.zeros(num_g, dtype=np.int64)
long keep
float[:] raw_cmc = np.zeros(num_g, dtype=np.float32) # binary vector, positions with value 1 are correct matches
float[:] masked_raw_cmc = np.zeros(num_g, dtype=np.float32)
float[:] cmc, masked_cmc
long num_g_real, num_g_real_masked, rank_i, rnd_idx
unsigned long meet_condition
float AP
long[:] kept_g_pids, mask
float num_rel
float[:] tmp_cmc = np.zeros(num_g, dtype=np.float32)
float tmp_cmc_sum
for q_idx in range(num_q):
# get query pid and camid
q_pid = q_pids[q_idx]
q_camid = q_camids[q_idx]
# remove gallery samples that have the same pid and camid with query
order = indices[q_idx]
num_g_real = 0
meet_condition = 0
kept_g_pids = np.zeros(num_g, dtype=np.int64)
for g_idx in range(num_g):
if (g_pids[order[g_idx]] != q_pid) or (g_camids[order[g_idx]] != q_camid):
raw_cmc[num_g_real] = matches[q_idx][g_idx]
kept_g_pids[num_g_real] = g_pids[order[g_idx]]
num_g_real += 1
if matches[q_idx][g_idx] > 1e-31:
meet_condition = 1
if not meet_condition:
# this condition is true when query identity does not appear in gallery
continue
# cuhk03-specific setting
g_pids_dict = defaultdict(list)
for g_idx in range(num_g_real):
g_pids_dict[kept_g_pids[g_idx]].append(g_idx)
cmc = np.zeros(max_rank, dtype=np.float32)
AP = 0.
for _ in range(num_repeats):
mask = np.zeros(num_g_real, dtype=np.int64)
for _, idxs in g_pids_dict.items():
# randomly sample one image for each gallery person
rnd_idx = np.random.choice(idxs)
#rnd_idx = idxs[0] # use deterministic for debugging
mask[rnd_idx] = 1
num_g_real_masked = 0
for g_idx in range(num_g_real):
if mask[g_idx] == 1:
masked_raw_cmc[num_g_real_masked] = raw_cmc[g_idx]
num_g_real_masked += 1
masked_cmc = np.zeros(num_g, dtype=np.float32)
function_cumsum(masked_raw_cmc, masked_cmc, num_g_real_masked)
for g_idx in range(num_g_real_masked):
if masked_cmc[g_idx] > 1:
masked_cmc[g_idx] = 1
for rank_i in range(max_rank):
cmc[rank_i] += masked_cmc[rank_i] / num_repeats
# compute AP
function_cumsum(masked_raw_cmc, tmp_cmc, num_g_real_masked)
num_rel = 0
tmp_cmc_sum = 0
for g_idx in range(num_g_real_masked):
tmp_cmc_sum += (tmp_cmc[g_idx] / (g_idx + 1.)) * masked_raw_cmc[g_idx]
num_rel += masked_raw_cmc[g_idx]
AP += tmp_cmc_sum / num_rel
all_AP[q_idx] = AP / num_repeats
all_cmc[q_idx] = cmc
num_valid_q += 1.
assert num_valid_q > 0, "Error: all query identities do not appear in gallery"
# compute averaged cmc
cdef float[:] avg_cmc = np.zeros(max_rank, dtype=np.float32)
for rank_i in range(max_rank):
for q_idx in range(num_q):
avg_cmc[rank_i] += all_cmc[q_idx, rank_i]
avg_cmc[rank_i] /= num_valid_q
cdef float mAP = 0
for q_idx in range(num_q):
mAP += all_AP[q_idx]
mAP /= num_valid_q
return np.asarray(avg_cmc).astype(np.float32), mAP
cpdef eval_market1501_cy(float[:,:] distmat, long[:] q_pids, long[:]g_pids,
long[:]q_camids, long[:]g_camids, long max_rank):
cdef long num_q = distmat.shape[0]
cdef long num_g = distmat.shape[1]
if num_g < max_rank:
max_rank = num_g
print("Note: number of gallery samples is quite small, got {}".format(num_g))
cdef:
long[:,:] indices = np.argsort(distmat, axis=1)
long[:,:] matches = (np.asarray(g_pids)[np.asarray(indices)] == np.asarray(q_pids)[:, np.newaxis]).astype(np.int64)
float[:,:] all_cmc = np.zeros((num_q, max_rank), dtype=np.float32)
float[:] all_AP = np.zeros(num_q, dtype=np.float32)
float num_valid_q = 0. # number of valid query
long q_idx, q_pid, q_camid, g_idx
long[:] order = np.zeros(num_g, dtype=np.int64)
long keep
float[:] raw_cmc = np.zeros(num_g, dtype=np.float32) # binary vector, positions with value 1 are correct matches
float[:] cmc = np.zeros(num_g, dtype=np.float32)
long num_g_real
unsigned long meet_condition
float num_rel
float[:] tmp_cmc = np.zeros(num_g, dtype=np.float32)
float tmp_cmc_sum
for q_idx in range(num_q):
# get query pid and camid
q_pid = q_pids[q_idx]
q_camid = q_camids[q_idx]
# remove gallery samples that have the same pid and camid with query
order = indices[q_idx]
num_g_real = 0
meet_condition = 0
for g_idx in range(num_g):
if (g_pids[order[g_idx]] != q_pid) or (g_camids[order[g_idx]] != q_camid):
raw_cmc[num_g_real] = matches[q_idx][g_idx]
num_g_real += 1
if matches[q_idx][g_idx] > 1e-31:
meet_condition = 1
if not meet_condition:
# this condition is true when query identity does not appear in gallery
continue
# compute cmc
function_cumsum(raw_cmc, cmc, num_g_real)
for g_idx in range(num_g_real):
if cmc[g_idx] > 1:
cmc[g_idx] = 1
all_cmc[q_idx] = cmc[:max_rank]
num_valid_q += 1.
# compute average precision
# reference: https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Average_precision
function_cumsum(raw_cmc, tmp_cmc, num_g_real)
num_rel = 0
tmp_cmc_sum = 0
for g_idx in range(num_g_real):
tmp_cmc_sum += (tmp_cmc[g_idx] / (g_idx + 1.)) * raw_cmc[g_idx]
num_rel += raw_cmc[g_idx]
all_AP[q_idx] = tmp_cmc_sum / num_rel
assert num_valid_q > 0, "Error: all query identities do not appear in gallery"
# compute averaged cmc
cdef float[:] avg_cmc = np.zeros(max_rank, dtype=np.float32)
cdef long rank_i
for rank_i in range(max_rank):
for q_idx in range(num_q):
avg_cmc[rank_i] += all_cmc[q_idx, rank_i]
avg_cmc[rank_i] /= num_valid_q
cdef float mAP = 0
for q_idx in range(num_q):
mAP += all_AP[q_idx]
mAP /= num_valid_q
return np.asarray(avg_cmc).astype(np.float32), mAP
# Compute the cumulative sum
cpdef void function_cumsum(float[:] src, float[:] dst, long n):
cdef long i
dst[0] = src[0]
for i in range(1, n):
dst[i] = src[i] + dst[i - 1]