98 lines
3.3 KiB
Python
98 lines
3.3 KiB
Python
from __future__ import absolute_import
|
|
from __future__ import print_function
|
|
from __future__ import division
|
|
|
|
import sys
|
|
import os
|
|
import os.path as osp
|
|
|
|
from torchreid.data.datasets import ImageDataset
|
|
|
|
|
|
# To adapt to different versions
|
|
# Log:
|
|
# 22.01.2019: v1 and v2 only differ in dir names
|
|
TRAIN_DIR_KEY = 'train_dir'
|
|
TEST_DIR_KEY = 'test_dir'
|
|
VERSION_DICT = {
|
|
'MSMT17_V1': {
|
|
TRAIN_DIR_KEY: 'train',
|
|
TEST_DIR_KEY: 'test',
|
|
},
|
|
'MSMT17_V2': {
|
|
TRAIN_DIR_KEY: 'mask_train_v2',
|
|
TEST_DIR_KEY: 'mask_test_v2',
|
|
}
|
|
}
|
|
|
|
|
|
class MSMT17(ImageDataset):
|
|
"""MSMT17
|
|
|
|
Reference:
|
|
Wei et al. Person Transfer GAN to Bridge Domain Gap for Person Re-Identification. CVPR 2018.
|
|
|
|
URL: http://www.pkuvmc.com/publications/msmt17.html
|
|
|
|
Dataset statistics:
|
|
identities: 4101
|
|
images: 32621 (train) + 11659 (query) + 82161 (gallery)
|
|
cameras: 15
|
|
"""
|
|
dataset_dir = 'msmt17'
|
|
dataset_url = None
|
|
|
|
def __init__(self, root='', **kwargs):
|
|
self.root = osp.abspath(osp.expanduser(root))
|
|
self.dataset_dir = osp.join(self.root, self.dataset_dir)
|
|
self.download_dataset(self.dataset_dir, self.dataset_url)
|
|
|
|
has_main_dir = False
|
|
for main_dir in VERSION_DICT:
|
|
if osp.exists(osp.join(self.dataset_dir, main_dir)):
|
|
train_dir = VERSION_DICT[main_dir][TRAIN_DIR_KEY]
|
|
test_dir = VERSION_DICT[main_dir][TEST_DIR_KEY]
|
|
has_main_dir = True
|
|
break
|
|
assert has_main_dir, 'Dataset folder not found'
|
|
|
|
self.train_dir = osp.join(self.dataset_dir, main_dir, train_dir)
|
|
self.test_dir = osp.join(self.dataset_dir, main_dir, test_dir)
|
|
self.list_train_path = osp.join(self.dataset_dir, main_dir, 'list_train.txt')
|
|
self.list_val_path = osp.join(self.dataset_dir, main_dir, 'list_val.txt')
|
|
self.list_query_path = osp.join(self.dataset_dir, main_dir, 'list_query.txt')
|
|
self.list_gallery_path = osp.join(self.dataset_dir, main_dir, 'list_gallery.txt')
|
|
|
|
required_files = [
|
|
self.dataset_dir,
|
|
self.train_dir,
|
|
self.test_dir
|
|
]
|
|
self.check_before_run(required_files)
|
|
|
|
train = self.process_dir(self.train_dir, self.list_train_path)
|
|
val = self.process_dir(self.train_dir, self.list_val_path)
|
|
query = self.process_dir(self.test_dir, self.list_query_path)
|
|
gallery = self.process_dir(self.test_dir, self.list_gallery_path)
|
|
|
|
# Note: to fairly compare with published methods on the conventional ReID setting,
|
|
# do not add val images to the training set.
|
|
if 'combineall' in kwargs and kwargs['combineall']:
|
|
train += val
|
|
|
|
super(MSMT17, self).__init__(train, query, gallery, **kwargs)
|
|
|
|
def process_dir(self, dir_path, list_path):
|
|
with open(list_path, 'r') as txt:
|
|
lines = txt.readlines()
|
|
|
|
data = []
|
|
|
|
for img_idx, img_info in enumerate(lines):
|
|
img_path, pid = img_info.split(' ')
|
|
pid = int(pid) # no need to relabel
|
|
camid = int(img_path.split('_')[2]) - 1 # index starts from 0
|
|
img_path = osp.join(dir_path, img_path)
|
|
data.append((img_path, pid, camid))
|
|
|
|
return data |