79 lines
2.8 KiB
Python
79 lines
2.8 KiB
Python
from __future__ import absolute_import
|
|
from __future__ import print_function
|
|
from __future__ import division
|
|
|
|
import sys
|
|
import os
|
|
import os.path as osp
|
|
import glob
|
|
|
|
from torchreid.data.datasets import VideoDataset
|
|
from torchreid.utils import read_json, write_json
|
|
|
|
|
|
class PRID2011(VideoDataset):
|
|
"""PRID2011
|
|
|
|
Reference:
|
|
Hirzer et al. Person Re-Identification by Descriptive and Discriminative Classification. SCIA 2011.
|
|
|
|
URL: https://www.tugraz.at/institute/icg/research/team-bischof/lrs/downloads/PRID11/
|
|
|
|
Dataset statistics:
|
|
identities: 200
|
|
tracklets: 400
|
|
cameras: 2
|
|
"""
|
|
dataset_dir = 'prid2011'
|
|
dataset_url = None
|
|
|
|
def __init__(self, root='', split_id=0, **kwargs):
|
|
self.root = osp.abspath(osp.expanduser(root))
|
|
self.dataset_dir = osp.join(self.root, self.dataset_dir)
|
|
self.download_dataset(self.dataset_dir, self.dataset_url)
|
|
|
|
self.split_path = osp.join(self.dataset_dir, 'splits_prid2011.json')
|
|
self.cam_a_dir = osp.join(self.dataset_dir, 'prid_2011', 'multi_shot', 'cam_a')
|
|
self.cam_b_dir = osp.join(self.dataset_dir, 'prid_2011', 'multi_shot', 'cam_b')
|
|
|
|
required_files = [
|
|
self.dataset_dir,
|
|
self.cam_a_dir,
|
|
self.cam_b_dir
|
|
]
|
|
self.check_before_run(required_files)
|
|
|
|
splits = read_json(self.split_path)
|
|
if split_id >= len(splits):
|
|
raise ValueError('split_id exceeds range, received {}, but expected between 0 and {}'.format(split_id, len(splits)-1))
|
|
split = splits[split_id]
|
|
train_dirs, test_dirs = split['train'], split['test']
|
|
|
|
train = self.process_dir(train_dirs, cam1=True, cam2=True)
|
|
query = self.process_dir(test_dirs, cam1=True, cam2=False)
|
|
gallery = self.process_dir(test_dirs, cam1=False, cam2=True)
|
|
|
|
super(PRID2011, self).__init__(train, query, gallery, **kwargs)
|
|
|
|
def process_dir(self, dirnames, cam1=True, cam2=True):
|
|
tracklets = []
|
|
dirname2pid = {dirname:i for i, dirname in enumerate(dirnames)}
|
|
|
|
for dirname in dirnames:
|
|
if cam1:
|
|
person_dir = osp.join(self.cam_a_dir, dirname)
|
|
img_names = glob.glob(osp.join(person_dir, '*.png'))
|
|
assert len(img_names) > 0
|
|
img_names = tuple(img_names)
|
|
pid = dirname2pid[dirname]
|
|
tracklets.append((img_names, pid, 0))
|
|
|
|
if cam2:
|
|
person_dir = osp.join(self.cam_b_dir, dirname)
|
|
img_names = glob.glob(osp.join(person_dir, '*.png'))
|
|
assert len(img_names) > 0
|
|
img_names = tuple(img_names)
|
|
pid = dirname2pid[dirname]
|
|
tracklets.append((img_names, pid, 1))
|
|
|
|
return tracklets |