deep-person-reid/torchreid/datasets/bases.py

192 lines
7.0 KiB
Python

from __future__ import absolute_import
from __future__ import print_function
import os
import os.path as osp
import numpy as np
import copy
class BaseDataset(object):
"""Base class of reid dataset"""
def __init__(self, root):
self.root = osp.expanduser(root)
def check_before_run(self, required_files):
"""Check if required files exist before going deeper"""
for f in required_files:
if not osp.exists(f):
raise RuntimeError('"{}" is not found'.format(f))
def extract_data_info(self, data):
"""Extract info from data list
Args:
data (list): contains a list of (img_path, pid, camid)
"""
raise NotImplementedError
def get_num_pids(self, data):
return self.extract_data_info(data)[0]
def get_num_cams(self, data):
return self.extract_data_info(data)[2]
def init_attributes(self, train, query, gallery, combineall=False, **kwargs):
"""Initialize class attributes
Args:
train (list): contains a list of (img_path, pid, camid)
query (list): contains a list of (img_path, pid, camid)
gallery (list): contains a list of (img_path, pid, camid)
combineall (bool): if set to True, combine all data for training, default is False
Notes:
This method has to be called (at the end) in each dataset class.
"""
self._train = train
self._query = query
self._gallery = gallery
self._num_train_pids = self.get_num_pids(train)
self._num_train_cams = self.get_num_cams(train)
if combineall:
self._train = self.combine_all(train, query, gallery)
self._num_train_pids = self.get_num_pids(self.train)
def combine_all(self, train, query, gallery):
"""Combine all data for training
Notes:
1. In general, we assume that all query identities appear in gallery set.
2. All pids in train have been relabeled (starts from 0)
3. pid=0 (background) and pid=-1 (junk) are discarded.
4. Camera views remain the same across train, query and gallery.
"""
raise NotImplementedError
@property
def train(self):
# train list containing (img_path, pid, camid)
return self._train
@property
def query(self):
# query list containing (img_path, pid, camid)
return self._query
@property
def gallery(self):
# gallery list containing (img_path, pid, camid)
return self._gallery
@property
def num_train_pids(self):
# number of train identities
return self._num_train_pids
@property
def num_train_cams(self):
# number of train camera views
return self._num_train_cams
def print_dataset_statistics(self):
raise NotImplementedError
class BaseImageDataset(BaseDataset):
"""Base class of image-reid dataset"""
def extract_data_info(self, data):
pids = set()
cams = set()
for _, pid, camid in data:
pids.add(pid)
cams.add(camid)
num_pids = len(pids)
num_cams = len(cams)
num_imgs = len(data)
return num_pids, num_imgs, num_cams
def combine_all(self, train, query, gallery):
combined = copy.deepcopy(train)
# relabel pids in gallery
g_pids = set()
for _, pid, _ in gallery:
if pid==0 or pid==-1:
continue
g_pids.add(pid)
pid2label = {pid: i for i, pid in enumerate(g_pids)}
def _combine_data(data):
for img_path, pid, camid in data:
if pid==0 or pid==-1:
continue
pid = pid2label[pid] + self.num_train_pids
combined.append((img_path, pid, camid))
_combine_data(query)
_combine_data(gallery)
return combined
def print_dataset_statistics(self, train, query, gallery):
num_train_pids, num_train_imgs, num_train_cams = self.extract_data_info(train)
num_query_pids, num_query_imgs, num_query_cams = self.extract_data_info(query)
num_gallery_pids, num_gallery_imgs, num_gallery_cams = self.extract_data_info(gallery)
print('=> Loaded {}'.format(self.__class__.__name__))
print(' ----------------------------------------')
print(' subset | # ids | # images | # cameras')
print(' ----------------------------------------')
print(' train | {:5d} | {:8d} | {:9d}'.format(num_train_pids, num_train_imgs, num_train_cams))
print(' query | {:5d} | {:8d} | {:9d}'.format(num_query_pids, num_query_imgs, num_query_cams))
print(' gallery | {:5d} | {:8d} | {:9d}'.format(num_gallery_pids, num_gallery_imgs, num_gallery_cams))
print(' ----------------------------------------')
class BaseVideoDataset(BaseDataset):
"""Base class of video-reid dataset"""
def extract_data_info(self, data, return_tracklet_stats=False):
pids = set()
cams = set()
tracklet_stats = []
for img_paths, pid, camid in data:
pids.add(pid)
cams.add(camid)
tracklet_stats += [len(img_paths)]
num_pids = len(pids)
num_cams = len(cams)
num_tracklets = len(data)
if return_tracklet_stats:
return num_pids, num_tracklets, num_cams, tracklet_stats
return num_pids, num_tracklets, num_cams
def print_dataset_statistics(self, train, query, gallery):
num_train_pids, num_train_tracklets, num_train_cams, train_tracklet_stats = \
self.extract_data_info(train, return_tracklet_stats=True)
num_query_pids, num_query_tracklets, num_query_cams, query_tracklet_stats = \
self.extract_data_info(query, return_tracklet_stats=True)
num_gallery_pids, num_gallery_tracklets, num_gallery_cams, gallery_tracklet_stats = \
self.extract_data_info(gallery, return_tracklet_stats=True)
tracklet_stats = train_tracklet_stats + query_tracklet_stats + gallery_tracklet_stats
min_num = np.min(tracklet_stats)
max_num = np.max(tracklet_stats)
avg_num = np.mean(tracklet_stats)
print('=> Loaded {}'.format(self.__class__.__name__))
print(' -------------------------------------------')
print(' subset | # ids | # tracklets | # cameras')
print(' -------------------------------------------')
print(' train | {:5d} | {:11d} | {:9d}'.format(num_train_pids, num_train_tracklets, num_train_cams))
print(' query | {:5d} | {:11d} | {:9d}'.format(num_query_pids, num_query_tracklets, num_query_cams))
print(' gallery | {:5d} | {:11d} | {:9d}'.format(num_gallery_pids, num_gallery_tracklets, num_gallery_cams))
print(' -------------------------------------------')
print(' number of images per tracklet: {} ~ {}, average {:.2f}'.format(min_num, max_num, avg_num))
print(' -------------------------------------------')