deep-person-reid/torchreid/datasets/viper.py

155 lines
5.6 KiB
Python

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import glob
import re
import sys
import urllib
import tarfile
import zipfile
import os.path as osp
from scipy.io import loadmat
import numpy as np
import h5py
from scipy.misc import imsave
from torchreid.utils.iotools import mkdir_if_missing, write_json, read_json
from .bases import BaseImageDataset
class VIPeR(BaseImageDataset):
"""VIPeR
Reference:
Gray et al. Evaluating appearance models for recognition, reacquisition, and tracking. PETS 2007.
URL: https://vision.soe.ucsc.edu/node/178
Dataset statistics:
# identities: 632
# images: 632 x 2 = 1264
# cameras: 2
"""
dataset_dir = 'viper'
def __init__(self, root='data', split_id=0, verbose=True, **kwargs):
super(VIPeR, self).__init__(root)
self.dataset_dir = osp.join(self.root, self.dataset_dir)
self.dataset_url = 'http://users.soe.ucsc.edu/~manduchi/VIPeR.v1.0.zip'
self.cam_a_dir = osp.join(self.dataset_dir, 'VIPeR', 'cam_a')
self.cam_b_dir = osp.join(self.dataset_dir, 'VIPeR', 'cam_b')
self.split_path = osp.join(self.dataset_dir, 'splits.json')
self.download_data()
required_files = [
self.dataset_dir,
self.cam_a_dir,
self.cam_b_dir
]
self.check_before_run(required_files)
self.prepare_split()
splits = read_json(self.split_path)
if split_id >= len(splits):
raise ValueError('split_id exceeds range, received {}, but expected between 0 and {}'.format(split_id, len(splits)-1))
split = splits[split_id]
train = split['train']
query = split['query'] # note: query and gallery share the same images
gallery = split['gallery']
train = [tuple(item) for item in train]
query = [tuple(item) for item in query]
gallery = [tuple(item) for item in gallery]
self.init_attributes(train, query, gallery, **kwargs)
if verbose:
self.print_dataset_statistics(self.train, self.query, self.gallery)
def download_data(self):
if osp.exists(self.dataset_dir):
return
print('Creating directory {}'.format(self.dataset_dir))
mkdir_if_missing(self.dataset_dir)
fpath = osp.join(self.dataset_dir, osp.basename(self.dataset_url))
print('Downloading VIPeR dataset')
urllib.urlretrieve(self.dataset_url, fpath)
print('Extracting files')
zip_ref = zipfile.ZipFile(fpath, 'r')
zip_ref.extractall(self.dataset_dir)
zip_ref.close()
def prepare_split(self):
if not osp.exists(self.split_path):
print('Creating 10 random splits of train ids and test ids')
cam_a_imgs = sorted(glob.glob(osp.join(self.cam_a_dir, '*.bmp')))
cam_b_imgs = sorted(glob.glob(osp.join(self.cam_b_dir, '*.bmp')))
assert len(cam_a_imgs) == len(cam_b_imgs)
num_pids = len(cam_a_imgs)
print('Number of identities: {}'.format(num_pids))
num_train_pids = num_pids // 2
"""
In total, there will be 20 splits because each random split creates two
sub-splits, one using cameraA as query and cameraB as gallery
while the other using cameraB as query and cameraA as gallery.
Therefore, results should be averaged over 20 splits (split_id=0~19).
In practice, a model trained on split_id=0 can be applied to split_id=0&1
as split_id=0&1 share the same training data (so on and so forth).
"""
splits = []
for _ in range(10):
order = np.arange(num_pids)
np.random.shuffle(order)
train_idxs = order[:num_train_pids]
test_idxs = order[num_train_pids:]
assert not bool(set(train_idxs) & set(test_idxs)), 'Error: train and test overlap'
train = []
for pid, idx in enumerate(train_idxs):
cam_a_img = cam_a_imgs[idx]
cam_b_img = cam_b_imgs[idx]
train.append((cam_a_img, pid, 0))
train.append((cam_b_img, pid, 1))
test_a = []
test_b = []
for pid, idx in enumerate(test_idxs):
cam_a_img = cam_a_imgs[idx]
cam_b_img = cam_b_imgs[idx]
test_a.append((cam_a_img, pid, 0))
test_b.append((cam_b_img, pid, 1))
# use cameraA as query and cameraB as gallery
split = {
'train': train,
'query': test_a,
'gallery': test_b,
'num_train_pids': num_train_pids,
'num_query_pids': num_pids - num_train_pids,
'num_gallery_pids': num_pids - num_train_pids
}
splits.append(split)
# use cameraB as query and cameraA as gallery
split = {
'train': train,
'query': test_b,
'gallery': test_a,
'num_train_pids': num_train_pids,
'num_query_pids': num_pids - num_train_pids,
'num_gallery_pids': num_pids - num_train_pids
}
splits.append(split)
print('Totally {} splits are created'.format(len(splits)))
write_json(splits, self.split_path)
print('Split file saved to {}'.format(self.split_path))