232 lines
8.9 KiB
Python
232 lines
8.9 KiB
Python
from __future__ import print_function, absolute_import
|
|
import os
|
|
import glob
|
|
import re
|
|
import sys
|
|
import os.path as osp
|
|
from scipy.io import loadmat
|
|
import numpy as np
|
|
|
|
"""Dataset classes"""
|
|
|
|
class Market1501(object):
|
|
"""
|
|
Market1501
|
|
|
|
Reference:
|
|
Zheng et al. Scalable Person Re-identification: A Benchmark. ICCV 2015.
|
|
|
|
Dataset statistics:
|
|
# identities: 1501 (+1 for background)
|
|
# images: 12936 (train) + 3368 (query) + 15913 (gallery)
|
|
"""
|
|
root = './data/market1501'
|
|
train_dir = osp.join(root, 'bounding_box_train')
|
|
query_dir = osp.join(root, 'query')
|
|
gallery_dir = osp.join(root, 'bounding_box_test')
|
|
|
|
def __init__(self):
|
|
self._check_dir(self.root)
|
|
self._check_dir(self.train_dir)
|
|
self._check_dir(self.query_dir)
|
|
self._check_dir(self.gallery_dir)
|
|
|
|
train, num_train_pids, num_train_imgs = self._process_dir(self.train_dir, relabel=True)
|
|
query, num_query_pids, num_query_imgs = self._process_dir(self.query_dir, relabel=False)
|
|
gallery, num_gallery_pids, num_gallery_imgs = self._process_dir(self.gallery_dir, relabel=False)
|
|
num_total_pids = num_train_pids + num_query_pids
|
|
num_total_imgs = num_train_imgs + num_query_imgs + num_gallery_imgs
|
|
|
|
print("=> Market1501 loaded")
|
|
print("Dataset statistics:")
|
|
print(" ------------------------------")
|
|
print(" subset | # ids | # images")
|
|
print(" ------------------------------")
|
|
print(" train | {:5d} | {:8d}".format(num_train_pids, num_train_imgs))
|
|
print(" query | {:5d} | {:8d}".format(num_query_pids, num_query_imgs))
|
|
print(" gallery | {:5d} | {:8d}".format(num_gallery_pids, num_gallery_imgs))
|
|
print(" ------------------------------")
|
|
print(" total | {:5d} | {:8d}".format(num_total_pids, num_total_imgs))
|
|
print(" ------------------------------")
|
|
|
|
self.train = train
|
|
self.query = query
|
|
self.gallery = gallery
|
|
|
|
self.num_train_pids = num_train_pids
|
|
self.num_query_pids = num_query_pids
|
|
self.num_gallery_pids = num_gallery_pids
|
|
|
|
def _process_dir(self, dir_path, relabel=False):
|
|
img_paths = glob.glob(osp.join(dir_path, '*.jpg'))
|
|
pattern = re.compile(r'([-\d]+)_c(\d)')
|
|
|
|
pid_container = set()
|
|
for img_path in img_paths:
|
|
pid, _ = map(int, pattern.search(img_path).groups())
|
|
if pid == -1: continue # junk images are just ignored
|
|
pid_container.add(pid)
|
|
pid2label = {pid:label for label, pid in enumerate(pid_container)}
|
|
|
|
dataset = []
|
|
for img_path in img_paths:
|
|
pid, camid = map(int, pattern.search(img_path).groups())
|
|
if pid == -1: continue # junk images are just ignored
|
|
assert 0 <= pid <= 1501 # pid == 0 means background
|
|
assert 1 <= camid <= 6
|
|
camid -= 1 # index starts from 0
|
|
if relabel: pid = pid2label[pid]
|
|
dataset.append((img_path, pid, camid))
|
|
|
|
num_pids = len(pid_container)
|
|
num_imgs = len(dataset)
|
|
return dataset, num_pids, num_imgs
|
|
|
|
def _check_dir(self, dir_path):
|
|
if not osp.exists(dir_path):
|
|
print("Error: '{}' is not available.".format(dir_path))
|
|
sys.exit()
|
|
|
|
class Mars(object):
|
|
"""
|
|
MARS
|
|
|
|
Reference:
|
|
Zheng et al. MARS: A Video Benchmark for Large-Scale Person Re-identification. ECCV 2016.
|
|
|
|
Dataset statistics:
|
|
# identities: 1261
|
|
# tracklets: 8298 (train) + 1980 (query) + 9330 (gallery)
|
|
|
|
Args:
|
|
min_seq_len (int): tracklet with length shorter than this value will be discarded.
|
|
"""
|
|
root = './data/mars'
|
|
train_name_path = osp.join(root, 'info/train_name.txt')
|
|
test_name_path = osp.join(root, 'info/test_name.txt')
|
|
track_train_info_path = osp.join(root, 'info/tracks_train_info.mat')
|
|
track_test_info_path = osp.join(root, 'info/tracks_test_info.mat')
|
|
query_IDX_path = osp.join(root, 'info/query_IDX.mat')
|
|
|
|
def __init__(self, min_seq_len=0):
|
|
# prepare meta data
|
|
train_names = self._get_names(self.train_name_path)
|
|
test_names = self._get_names(self.test_name_path)
|
|
track_train = loadmat(self.track_train_info_path)['track_train_info'] # numpy.ndarray (8298, 4)
|
|
track_test = loadmat(self.track_test_info_path)['track_test_info'] # numpy.ndarray (12180, 4)
|
|
query_IDX = loadmat(self.query_IDX_path)['query_IDX'].squeeze() # numpy.ndarray (1980,)
|
|
query_IDX -= 1 # index from 0
|
|
track_query = track_test[query_IDX,:]
|
|
gallery_IDX = [i for i in range(track_test.shape[0]) if i not in query_IDX]
|
|
track_gallery = track_test[gallery_IDX,:]
|
|
|
|
train, num_train_tracklets, num_train_pids, num_train_imgs = \
|
|
self._process_data(train_names, track_train, home_dir='bbox_train', relabel=True, min_seq_len=min_seq_len)
|
|
|
|
query, num_query_tracklets, num_query_pids, num_query_imgs = \
|
|
self._process_data(test_names, track_query, home_dir='bbox_test', relabel=False, min_seq_len=min_seq_len)
|
|
|
|
gallery, num_gallery_tracklets, num_gallery_pids, num_gallery_imgs = \
|
|
self._process_data(test_names, track_gallery, home_dir='bbox_test', relabel=False, min_seq_len=min_seq_len)
|
|
|
|
num_imgs_per_tracklet = num_train_imgs + num_query_imgs + num_gallery_imgs
|
|
min_num = np.min(num_imgs_per_tracklet)
|
|
max_num = np.max(num_imgs_per_tracklet)
|
|
avg_num = np.mean(num_imgs_per_tracklet)
|
|
|
|
num_total_pids = num_train_pids + num_query_pids
|
|
num_total_tracklets = num_train_tracklets + num_query_tracklets + num_gallery_tracklets
|
|
|
|
print("=> MARS loaded")
|
|
print("Dataset statistics:")
|
|
print(" ------------------------------")
|
|
print(" subset | # ids | # tracklets")
|
|
print(" ------------------------------")
|
|
print(" train | {:5d} | {:8d}".format(num_train_pids, num_train_tracklets))
|
|
print(" query | {:5d} | {:8d}".format(num_query_pids, num_query_tracklets))
|
|
print(" gallery | {:5d} | {:8d}".format(num_gallery_pids, num_gallery_tracklets))
|
|
print(" ------------------------------")
|
|
print(" total | {:5d} | {:8d}".format(num_total_pids, num_total_tracklets))
|
|
print(" number of images per tracklet: {} ~ {}, average {:.1f}".format(min_num, max_num, avg_num))
|
|
print(" ------------------------------")
|
|
|
|
self.train = train
|
|
self.query = query
|
|
self.gallery = gallery
|
|
|
|
self.num_train_pids = num_train_pids
|
|
self.num_query_pids = num_query_pids
|
|
self.num_gallery_pids = num_gallery_pids
|
|
|
|
def _get_names(self, fpath):
|
|
names = []
|
|
with open(fpath, 'r') as f:
|
|
for line in f:
|
|
new_line = line.rstrip()
|
|
names.append(new_line)
|
|
return names
|
|
|
|
def _process_data(self, names, meta_data, home_dir=None, relabel=False, min_seq_len=0):
|
|
assert home_dir in ['bbox_train', 'bbox_test']
|
|
num_tracklets = meta_data.shape[0]
|
|
pid_list = list(set(meta_data[:,2].tolist()))
|
|
num_pids = len(pid_list)
|
|
|
|
if relabel: pid2label = {pid:label for label, pid in enumerate(pid_list)}
|
|
tracklets = []
|
|
num_imgs_per_tracklet = []
|
|
|
|
for tracklet_idx in range(num_tracklets):
|
|
data = meta_data[tracklet_idx,...]
|
|
start_index, end_index, pid, camid = data
|
|
if pid == -1: continue # junk images are just ignored
|
|
assert 1 <= camid <= 6
|
|
if relabel: pid = pid2label[pid]
|
|
camid -= 1 # index starts from 0
|
|
img_names = names[start_index-1:end_index]
|
|
|
|
# make sure image names correspond to the same person
|
|
pnames = [img_name[:4] for img_name in img_names]
|
|
assert len(set(pnames)) == 1, "Error: a single tracklet contains different person images"
|
|
|
|
# make sure all images are captured under the same camera
|
|
camnames = [img_name[5] for img_name in img_names]
|
|
assert len(set(camnames)) == 1, "Error: images are captured under different cameras!"
|
|
|
|
# append image names with directory information
|
|
img_paths = [osp.join(self.root, home_dir, img_name[:4], img_name) for img_name in img_names]
|
|
if len(img_paths) >= min_seq_len:
|
|
img_paths = tuple(img_paths)
|
|
tracklets.append((img_paths, pid, camid))
|
|
num_imgs_per_tracklet.append(len(img_paths))
|
|
|
|
num_tracklets = len(tracklets)
|
|
|
|
return tracklets, num_tracklets, num_pids, num_imgs_per_tracklet
|
|
|
|
"""Create dataset"""
|
|
|
|
__factory = {
|
|
'market1501': Market1501,
|
|
'mars': Mars,
|
|
}
|
|
|
|
def get_names():
|
|
return __factory.keys()
|
|
|
|
def init_dataset(name, *args, **kwargs):
|
|
if name not in __factory.keys():
|
|
raise KeyError("Unknown dataset: {}".format(name))
|
|
return __factory[name](*args, **kwargs)
|
|
|
|
if __name__ == '__main__':
|
|
#dataset = Market1501()
|
|
dataset = Mars()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|