deep-person-reid/_modules/torchreid/engine/engine.html

697 lines
75 KiB
HTML

<!DOCTYPE html>
<html class="writer-html5" lang="en" >
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>torchreid.engine.engine &mdash; torchreid 1.4.0 documentation</title>
<link rel="stylesheet" href="../../../_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="../../../_static/pygments.css" type="text/css" />
<!--[if lt IE 9]>
<script src="../../../_static/js/html5shiv.min.js"></script>
<![endif]-->
<script type="text/javascript" id="documentation_options" data-url_root="../../../" src="../../../_static/documentation_options.js"></script>
<script type="text/javascript" src="../../../_static/jquery.js"></script>
<script type="text/javascript" src="../../../_static/underscore.js"></script>
<script type="text/javascript" src="../../../_static/doctools.js"></script>
<script type="text/javascript" src="../../../_static/language_data.js"></script>
<script async="async" type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-AMS-MML_HTMLorMML"></script>
<script type="text/javascript" src="../../../_static/js/theme.js"></script>
<link rel="index" title="Index" href="../../../genindex.html" />
<link rel="search" title="Search" href="../../../search.html" />
</head>
<body class="wy-body-for-nav">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
<div class="wy-side-scroll">
<div class="wy-side-nav-search" >
<a href="../../../index.html" class="icon icon-home" alt="Documentation Home"> torchreid
</a>
<div class="version">
1.4.0
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../../../search.html" method="get">
<input type="text" name="q" placeholder="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../../user_guide.html">How-to</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../datasets.html">Datasets</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../evaluation.html">Evaluation</a></li>
</ul>
<p class="caption"><span class="caption-text">Package Reference</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../../pkg/data.html">torchreid.data</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../pkg/engine.html">torchreid.engine</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../pkg/losses.html">torchreid.losses</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../pkg/metrics.html">torchreid.metrics</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../pkg/models.html">torchreid.models</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../pkg/optim.html">torchreid.optim</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../pkg/utils.html">torchreid.utils</a></li>
</ul>
<p class="caption"><span class="caption-text">Resources</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../../AWESOME_REID.html">Awesome-ReID</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../MODEL_ZOO.html">Model Zoo</a></li>
</ul>
</div>
</div>
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
<nav class="wy-nav-top" aria-label="top navigation">
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="../../../index.html">torchreid</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="wy-breadcrumbs">
<li><a href="../../../index.html" class="icon icon-home"></a> &raquo;</li>
<li><a href="../../index.html">Module code</a> &raquo;</li>
<li>torchreid.engine.engine</li>
<li class="wy-breadcrumbs-aside">
</li>
</ul>
<hr/>
</div>
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<h1>Source code for torchreid.engine.engine</h1><div class="highlight"><pre>
<span></span><span class="kn">from</span> <span class="nn">__future__</span> <span class="kn">import</span> <span class="n">division</span><span class="p">,</span> <span class="n">print_function</span><span class="p">,</span> <span class="n">absolute_import</span>
<span class="kn">import</span> <span class="nn">time</span>
<span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
<span class="kn">import</span> <span class="nn">os.path</span> <span class="k">as</span> <span class="nn">osp</span>
<span class="kn">import</span> <span class="nn">datetime</span>
<span class="kn">from</span> <span class="nn">collections</span> <span class="kn">import</span> <span class="n">OrderedDict</span>
<span class="kn">import</span> <span class="nn">torch</span>
<span class="kn">from</span> <span class="nn">torch.nn</span> <span class="kn">import</span> <span class="n">functional</span> <span class="k">as</span> <span class="n">F</span>
<span class="kn">from</span> <span class="nn">torch.utils.tensorboard</span> <span class="kn">import</span> <span class="n">SummaryWriter</span>
<span class="kn">from</span> <span class="nn">torchreid</span> <span class="kn">import</span> <span class="n">metrics</span>
<span class="kn">from</span> <span class="nn">torchreid.utils</span> <span class="kn">import</span> <span class="p">(</span>
<span class="n">MetricMeter</span><span class="p">,</span> <span class="n">AverageMeter</span><span class="p">,</span> <span class="n">re_ranking</span><span class="p">,</span> <span class="n">open_all_layers</span><span class="p">,</span> <span class="n">save_checkpoint</span><span class="p">,</span>
<span class="n">open_specified_layers</span><span class="p">,</span> <span class="n">visualize_ranked_results</span>
<span class="p">)</span>
<span class="kn">from</span> <span class="nn">torchreid.losses</span> <span class="kn">import</span> <span class="n">DeepSupervision</span>
<div class="viewcode-block" id="Engine"><a class="viewcode-back" href="../../../pkg/engine.html#torchreid.engine.engine.Engine">[docs]</a><span class="k">class</span> <span class="nc">Engine</span><span class="p">(</span><span class="nb">object</span><span class="p">):</span>
<span class="sa">r</span><span class="sd">&quot;&quot;&quot;A generic base Engine class for both image- and video-reid.</span>
<span class="sd"> Args:</span>
<span class="sd"> datamanager (DataManager): an instance of ``torchreid.data.ImageDataManager``</span>
<span class="sd"> or ``torchreid.data.VideoDataManager``.</span>
<span class="sd"> use_gpu (bool, optional): use gpu. Default is True.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">datamanager</span><span class="p">,</span> <span class="n">use_gpu</span><span class="o">=</span><span class="kc">True</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">datamanager</span> <span class="o">=</span> <span class="n">datamanager</span>
<span class="bp">self</span><span class="o">.</span><span class="n">train_loader</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">datamanager</span><span class="o">.</span><span class="n">train_loader</span>
<span class="bp">self</span><span class="o">.</span><span class="n">test_loader</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">datamanager</span><span class="o">.</span><span class="n">test_loader</span>
<span class="bp">self</span><span class="o">.</span><span class="n">use_gpu</span> <span class="o">=</span> <span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">cuda</span><span class="o">.</span><span class="n">is_available</span><span class="p">()</span> <span class="ow">and</span> <span class="n">use_gpu</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">writer</span> <span class="o">=</span> <span class="kc">None</span>
<span class="bp">self</span><span class="o">.</span><span class="n">epoch</span> <span class="o">=</span> <span class="mi">0</span>
<span class="bp">self</span><span class="o">.</span><span class="n">model</span> <span class="o">=</span> <span class="kc">None</span>
<span class="bp">self</span><span class="o">.</span><span class="n">optimizer</span> <span class="o">=</span> <span class="kc">None</span>
<span class="bp">self</span><span class="o">.</span><span class="n">scheduler</span> <span class="o">=</span> <span class="kc">None</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_models</span> <span class="o">=</span> <span class="n">OrderedDict</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_optims</span> <span class="o">=</span> <span class="n">OrderedDict</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_scheds</span> <span class="o">=</span> <span class="n">OrderedDict</span><span class="p">()</span>
<span class="k">def</span> <span class="nf">register_model</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">name</span><span class="o">=</span><span class="s1">&#39;model&#39;</span><span class="p">,</span> <span class="n">model</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">optim</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">sched</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="vm">__dict__</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">&#39;_models&#39;</span><span class="p">)</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">AttributeError</span><span class="p">(</span>
<span class="s1">&#39;Cannot assign model before super().__init__() call&#39;</span>
<span class="p">)</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="vm">__dict__</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">&#39;_optims&#39;</span><span class="p">)</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">AttributeError</span><span class="p">(</span>
<span class="s1">&#39;Cannot assign optim before super().__init__() call&#39;</span>
<span class="p">)</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="vm">__dict__</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">&#39;_scheds&#39;</span><span class="p">)</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">AttributeError</span><span class="p">(</span>
<span class="s1">&#39;Cannot assign sched before super().__init__() call&#39;</span>
<span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_models</span><span class="p">[</span><span class="n">name</span><span class="p">]</span> <span class="o">=</span> <span class="n">model</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_optims</span><span class="p">[</span><span class="n">name</span><span class="p">]</span> <span class="o">=</span> <span class="n">optim</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_scheds</span><span class="p">[</span><span class="n">name</span><span class="p">]</span> <span class="o">=</span> <span class="n">sched</span>
<span class="k">def</span> <span class="nf">get_model_names</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">names</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="n">names_real</span> <span class="o">=</span> <span class="nb">list</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_models</span><span class="o">.</span><span class="n">keys</span><span class="p">())</span>
<span class="k">if</span> <span class="n">names</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">if</span> <span class="ow">not</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">names</span><span class="p">,</span> <span class="nb">list</span><span class="p">):</span>
<span class="n">names</span> <span class="o">=</span> <span class="p">[</span><span class="n">names</span><span class="p">]</span>
<span class="k">for</span> <span class="n">name</span> <span class="ow">in</span> <span class="n">names</span><span class="p">:</span>
<span class="k">assert</span> <span class="n">name</span> <span class="ow">in</span> <span class="n">names_real</span>
<span class="k">return</span> <span class="n">names</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">return</span> <span class="n">names_real</span>
<span class="k">def</span> <span class="nf">save_model</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">epoch</span><span class="p">,</span> <span class="n">rank1</span><span class="p">,</span> <span class="n">save_dir</span><span class="p">,</span> <span class="n">is_best</span><span class="o">=</span><span class="kc">False</span><span class="p">):</span>
<span class="n">names</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">get_model_names</span><span class="p">()</span>
<span class="k">for</span> <span class="n">name</span> <span class="ow">in</span> <span class="n">names</span><span class="p">:</span>
<span class="n">save_checkpoint</span><span class="p">(</span>
<span class="p">{</span>
<span class="s1">&#39;state_dict&#39;</span><span class="p">:</span> <span class="bp">self</span><span class="o">.</span><span class="n">_models</span><span class="p">[</span><span class="n">name</span><span class="p">]</span><span class="o">.</span><span class="n">state_dict</span><span class="p">(),</span>
<span class="s1">&#39;epoch&#39;</span><span class="p">:</span> <span class="n">epoch</span> <span class="o">+</span> <span class="mi">1</span><span class="p">,</span>
<span class="s1">&#39;rank1&#39;</span><span class="p">:</span> <span class="n">rank1</span><span class="p">,</span>
<span class="s1">&#39;optimizer&#39;</span><span class="p">:</span> <span class="bp">self</span><span class="o">.</span><span class="n">_optims</span><span class="p">[</span><span class="n">name</span><span class="p">]</span><span class="o">.</span><span class="n">state_dict</span><span class="p">(),</span>
<span class="s1">&#39;scheduler&#39;</span><span class="p">:</span> <span class="bp">self</span><span class="o">.</span><span class="n">_scheds</span><span class="p">[</span><span class="n">name</span><span class="p">]</span><span class="o">.</span><span class="n">state_dict</span><span class="p">()</span>
<span class="p">},</span>
<span class="n">osp</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">save_dir</span><span class="p">,</span> <span class="n">name</span><span class="p">),</span>
<span class="n">is_best</span><span class="o">=</span><span class="n">is_best</span>
<span class="p">)</span>
<span class="k">def</span> <span class="nf">set_model_mode</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">mode</span><span class="o">=</span><span class="s1">&#39;train&#39;</span><span class="p">,</span> <span class="n">names</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="k">assert</span> <span class="n">mode</span> <span class="ow">in</span> <span class="p">[</span><span class="s1">&#39;train&#39;</span><span class="p">,</span> <span class="s1">&#39;eval&#39;</span><span class="p">,</span> <span class="s1">&#39;test&#39;</span><span class="p">]</span>
<span class="n">names</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">get_model_names</span><span class="p">(</span><span class="n">names</span><span class="p">)</span>
<span class="k">for</span> <span class="n">name</span> <span class="ow">in</span> <span class="n">names</span><span class="p">:</span>
<span class="k">if</span> <span class="n">mode</span> <span class="o">==</span> <span class="s1">&#39;train&#39;</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_models</span><span class="p">[</span><span class="n">name</span><span class="p">]</span><span class="o">.</span><span class="n">train</span><span class="p">()</span>
<span class="k">else</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_models</span><span class="p">[</span><span class="n">name</span><span class="p">]</span><span class="o">.</span><span class="n">eval</span><span class="p">()</span>
<span class="k">def</span> <span class="nf">get_current_lr</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">names</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="n">names</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">get_model_names</span><span class="p">(</span><span class="n">names</span><span class="p">)</span>
<span class="n">name</span> <span class="o">=</span> <span class="n">names</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_optims</span><span class="p">[</span><span class="n">name</span><span class="p">]</span><span class="o">.</span><span class="n">param_groups</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">][</span><span class="s1">&#39;lr&#39;</span><span class="p">]</span>
<span class="k">def</span> <span class="nf">update_lr</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">names</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="n">names</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">get_model_names</span><span class="p">(</span><span class="n">names</span><span class="p">)</span>
<span class="k">for</span> <span class="n">name</span> <span class="ow">in</span> <span class="n">names</span><span class="p">:</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">_scheds</span><span class="p">[</span><span class="n">name</span><span class="p">]</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_scheds</span><span class="p">[</span><span class="n">name</span><span class="p">]</span><span class="o">.</span><span class="n">step</span><span class="p">()</span>
<div class="viewcode-block" id="Engine.run"><a class="viewcode-back" href="../../../pkg/engine.html#torchreid.engine.engine.Engine.run">[docs]</a> <span class="k">def</span> <span class="nf">run</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span>
<span class="n">save_dir</span><span class="o">=</span><span class="s1">&#39;log&#39;</span><span class="p">,</span>
<span class="n">max_epoch</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span>
<span class="n">start_epoch</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span>
<span class="n">print_freq</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span>
<span class="n">fixbase_epoch</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span>
<span class="n">open_layers</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">start_eval</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span>
<span class="n">eval_freq</span><span class="o">=-</span><span class="mi">1</span><span class="p">,</span>
<span class="n">test_only</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">dist_metric</span><span class="o">=</span><span class="s1">&#39;euclidean&#39;</span><span class="p">,</span>
<span class="n">normalize_feature</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">visrank</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">visrank_topk</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span>
<span class="n">use_metric_cuhk03</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">ranks</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">10</span><span class="p">,</span> <span class="mi">20</span><span class="p">],</span>
<span class="n">rerank</span><span class="o">=</span><span class="kc">False</span>
<span class="p">):</span>
<span class="sa">r</span><span class="sd">&quot;&quot;&quot;A unified pipeline for training and evaluating a model.</span>
<span class="sd"> Args:</span>
<span class="sd"> save_dir (str): directory to save model.</span>
<span class="sd"> max_epoch (int): maximum epoch.</span>
<span class="sd"> start_epoch (int, optional): starting epoch. Default is 0.</span>
<span class="sd"> print_freq (int, optional): print_frequency. Default is 10.</span>
<span class="sd"> fixbase_epoch (int, optional): number of epochs to train ``open_layers`` (new layers)</span>
<span class="sd"> while keeping base layers frozen. Default is 0. ``fixbase_epoch`` is counted</span>
<span class="sd"> in ``max_epoch``.</span>
<span class="sd"> open_layers (str or list, optional): layers (attribute names) open for training.</span>
<span class="sd"> start_eval (int, optional): from which epoch to start evaluation. Default is 0.</span>
<span class="sd"> eval_freq (int, optional): evaluation frequency. Default is -1 (meaning evaluation</span>
<span class="sd"> is only performed at the end of training).</span>
<span class="sd"> test_only (bool, optional): if True, only runs evaluation on test datasets.</span>
<span class="sd"> Default is False.</span>
<span class="sd"> dist_metric (str, optional): distance metric used to compute distance matrix</span>
<span class="sd"> between query and gallery. Default is &quot;euclidean&quot;.</span>
<span class="sd"> normalize_feature (bool, optional): performs L2 normalization on feature vectors before</span>
<span class="sd"> computing feature distance. Default is False.</span>
<span class="sd"> visrank (bool, optional): visualizes ranked results. Default is False. It is recommended to</span>
<span class="sd"> enable ``visrank`` when ``test_only`` is True. The ranked images will be saved to</span>
<span class="sd"> &quot;save_dir/visrank_dataset&quot;, e.g. &quot;save_dir/visrank_market1501&quot;.</span>
<span class="sd"> visrank_topk (int, optional): top-k ranked images to be visualized. Default is 10.</span>
<span class="sd"> use_metric_cuhk03 (bool, optional): use single-gallery-shot setting for cuhk03.</span>
<span class="sd"> Default is False. This should be enabled when using cuhk03 classic split.</span>
<span class="sd"> ranks (list, optional): cmc ranks to be computed. Default is [1, 5, 10, 20].</span>
<span class="sd"> rerank (bool, optional): uses person re-ranking (by Zhong et al. CVPR&#39;17).</span>
<span class="sd"> Default is False. This is only enabled when test_only=True.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">if</span> <span class="n">visrank</span> <span class="ow">and</span> <span class="ow">not</span> <span class="n">test_only</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span>
<span class="s1">&#39;visrank can be set to True only if test_only=True&#39;</span>
<span class="p">)</span>
<span class="k">if</span> <span class="n">test_only</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">test</span><span class="p">(</span>
<span class="n">dist_metric</span><span class="o">=</span><span class="n">dist_metric</span><span class="p">,</span>
<span class="n">normalize_feature</span><span class="o">=</span><span class="n">normalize_feature</span><span class="p">,</span>
<span class="n">visrank</span><span class="o">=</span><span class="n">visrank</span><span class="p">,</span>
<span class="n">visrank_topk</span><span class="o">=</span><span class="n">visrank_topk</span><span class="p">,</span>
<span class="n">save_dir</span><span class="o">=</span><span class="n">save_dir</span><span class="p">,</span>
<span class="n">use_metric_cuhk03</span><span class="o">=</span><span class="n">use_metric_cuhk03</span><span class="p">,</span>
<span class="n">ranks</span><span class="o">=</span><span class="n">ranks</span><span class="p">,</span>
<span class="n">rerank</span><span class="o">=</span><span class="n">rerank</span>
<span class="p">)</span>
<span class="k">return</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">writer</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">writer</span> <span class="o">=</span> <span class="n">SummaryWriter</span><span class="p">(</span><span class="n">log_dir</span><span class="o">=</span><span class="n">save_dir</span><span class="p">)</span>
<span class="n">time_start</span> <span class="o">=</span> <span class="n">time</span><span class="o">.</span><span class="n">time</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">start_epoch</span> <span class="o">=</span> <span class="n">start_epoch</span>
<span class="bp">self</span><span class="o">.</span><span class="n">max_epoch</span> <span class="o">=</span> <span class="n">max_epoch</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;=&gt; Start training&#39;</span><span class="p">)</span>
<span class="k">for</span> <span class="bp">self</span><span class="o">.</span><span class="n">epoch</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">start_epoch</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">max_epoch</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">train</span><span class="p">(</span>
<span class="n">print_freq</span><span class="o">=</span><span class="n">print_freq</span><span class="p">,</span>
<span class="n">fixbase_epoch</span><span class="o">=</span><span class="n">fixbase_epoch</span><span class="p">,</span>
<span class="n">open_layers</span><span class="o">=</span><span class="n">open_layers</span>
<span class="p">)</span>
<span class="k">if</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">epoch</span> <span class="o">+</span> <span class="mi">1</span><span class="p">)</span> <span class="o">&gt;=</span> <span class="n">start_eval</span> \
<span class="ow">and</span> <span class="n">eval_freq</span> <span class="o">&gt;</span> <span class="mi">0</span> \
<span class="ow">and</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">epoch</span><span class="o">+</span><span class="mi">1</span><span class="p">)</span> <span class="o">%</span> <span class="n">eval_freq</span> <span class="o">==</span> <span class="mi">0</span> \
<span class="ow">and</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">epoch</span> <span class="o">+</span> <span class="mi">1</span><span class="p">)</span> <span class="o">!=</span> <span class="bp">self</span><span class="o">.</span><span class="n">max_epoch</span><span class="p">:</span>
<span class="n">rank1</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">test</span><span class="p">(</span>
<span class="n">dist_metric</span><span class="o">=</span><span class="n">dist_metric</span><span class="p">,</span>
<span class="n">normalize_feature</span><span class="o">=</span><span class="n">normalize_feature</span><span class="p">,</span>
<span class="n">visrank</span><span class="o">=</span><span class="n">visrank</span><span class="p">,</span>
<span class="n">visrank_topk</span><span class="o">=</span><span class="n">visrank_topk</span><span class="p">,</span>
<span class="n">save_dir</span><span class="o">=</span><span class="n">save_dir</span><span class="p">,</span>
<span class="n">use_metric_cuhk03</span><span class="o">=</span><span class="n">use_metric_cuhk03</span><span class="p">,</span>
<span class="n">ranks</span><span class="o">=</span><span class="n">ranks</span>
<span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">save_model</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">epoch</span><span class="p">,</span> <span class="n">rank1</span><span class="p">,</span> <span class="n">save_dir</span><span class="p">)</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">max_epoch</span> <span class="o">&gt;</span> <span class="mi">0</span><span class="p">:</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;=&gt; Final test&#39;</span><span class="p">)</span>
<span class="n">rank1</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">test</span><span class="p">(</span>
<span class="n">dist_metric</span><span class="o">=</span><span class="n">dist_metric</span><span class="p">,</span>
<span class="n">normalize_feature</span><span class="o">=</span><span class="n">normalize_feature</span><span class="p">,</span>
<span class="n">visrank</span><span class="o">=</span><span class="n">visrank</span><span class="p">,</span>
<span class="n">visrank_topk</span><span class="o">=</span><span class="n">visrank_topk</span><span class="p">,</span>
<span class="n">save_dir</span><span class="o">=</span><span class="n">save_dir</span><span class="p">,</span>
<span class="n">use_metric_cuhk03</span><span class="o">=</span><span class="n">use_metric_cuhk03</span><span class="p">,</span>
<span class="n">ranks</span><span class="o">=</span><span class="n">ranks</span>
<span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">save_model</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">epoch</span><span class="p">,</span> <span class="n">rank1</span><span class="p">,</span> <span class="n">save_dir</span><span class="p">)</span>
<span class="n">elapsed</span> <span class="o">=</span> <span class="nb">round</span><span class="p">(</span><span class="n">time</span><span class="o">.</span><span class="n">time</span><span class="p">()</span> <span class="o">-</span> <span class="n">time_start</span><span class="p">)</span>
<span class="n">elapsed</span> <span class="o">=</span> <span class="nb">str</span><span class="p">(</span><span class="n">datetime</span><span class="o">.</span><span class="n">timedelta</span><span class="p">(</span><span class="n">seconds</span><span class="o">=</span><span class="n">elapsed</span><span class="p">))</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;Elapsed </span><span class="si">{}</span><span class="s1">&#39;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">elapsed</span><span class="p">))</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">writer</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">writer</span><span class="o">.</span><span class="n">close</span><span class="p">()</span></div>
<span class="k">def</span> <span class="nf">train</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">print_freq</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">fixbase_epoch</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">open_layers</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="n">losses</span> <span class="o">=</span> <span class="n">MetricMeter</span><span class="p">()</span>
<span class="n">batch_time</span> <span class="o">=</span> <span class="n">AverageMeter</span><span class="p">()</span>
<span class="n">data_time</span> <span class="o">=</span> <span class="n">AverageMeter</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">set_model_mode</span><span class="p">(</span><span class="s1">&#39;train&#39;</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">two_stepped_transfer_learning</span><span class="p">(</span>
<span class="bp">self</span><span class="o">.</span><span class="n">epoch</span><span class="p">,</span> <span class="n">fixbase_epoch</span><span class="p">,</span> <span class="n">open_layers</span>
<span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_batches</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">train_loader</span><span class="p">)</span>
<span class="n">end</span> <span class="o">=</span> <span class="n">time</span><span class="o">.</span><span class="n">time</span><span class="p">()</span>
<span class="k">for</span> <span class="bp">self</span><span class="o">.</span><span class="n">batch_idx</span><span class="p">,</span> <span class="n">data</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">train_loader</span><span class="p">):</span>
<span class="n">data_time</span><span class="o">.</span><span class="n">update</span><span class="p">(</span><span class="n">time</span><span class="o">.</span><span class="n">time</span><span class="p">()</span> <span class="o">-</span> <span class="n">end</span><span class="p">)</span>
<span class="n">loss_summary</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">forward_backward</span><span class="p">(</span><span class="n">data</span><span class="p">)</span>
<span class="n">batch_time</span><span class="o">.</span><span class="n">update</span><span class="p">(</span><span class="n">time</span><span class="o">.</span><span class="n">time</span><span class="p">()</span> <span class="o">-</span> <span class="n">end</span><span class="p">)</span>
<span class="n">losses</span><span class="o">.</span><span class="n">update</span><span class="p">(</span><span class="n">loss_summary</span><span class="p">)</span>
<span class="k">if</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">batch_idx</span> <span class="o">+</span> <span class="mi">1</span><span class="p">)</span> <span class="o">%</span> <span class="n">print_freq</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span>
<span class="n">nb_this_epoch</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_batches</span> <span class="o">-</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">batch_idx</span> <span class="o">+</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">nb_future_epochs</span> <span class="o">=</span> <span class="p">(</span>
<span class="bp">self</span><span class="o">.</span><span class="n">max_epoch</span> <span class="o">-</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">epoch</span> <span class="o">+</span> <span class="mi">1</span><span class="p">)</span>
<span class="p">)</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_batches</span>
<span class="n">eta_seconds</span> <span class="o">=</span> <span class="n">batch_time</span><span class="o">.</span><span class="n">avg</span> <span class="o">*</span> <span class="p">(</span><span class="n">nb_this_epoch</span><span class="o">+</span><span class="n">nb_future_epochs</span><span class="p">)</span>
<span class="n">eta_str</span> <span class="o">=</span> <span class="nb">str</span><span class="p">(</span><span class="n">datetime</span><span class="o">.</span><span class="n">timedelta</span><span class="p">(</span><span class="n">seconds</span><span class="o">=</span><span class="nb">int</span><span class="p">(</span><span class="n">eta_seconds</span><span class="p">)))</span>
<span class="nb">print</span><span class="p">(</span>
<span class="s1">&#39;epoch: [</span><span class="si">{0}</span><span class="s1">/</span><span class="si">{1}</span><span class="s1">][</span><span class="si">{2}</span><span class="s1">/</span><span class="si">{3}</span><span class="s1">]</span><span class="se">\t</span><span class="s1">&#39;</span>
<span class="s1">&#39;time </span><span class="si">{batch_time.val:.3f}</span><span class="s1"> (</span><span class="si">{batch_time.avg:.3f}</span><span class="s1">)</span><span class="se">\t</span><span class="s1">&#39;</span>
<span class="s1">&#39;data </span><span class="si">{data_time.val:.3f}</span><span class="s1"> (</span><span class="si">{data_time.avg:.3f}</span><span class="s1">)</span><span class="se">\t</span><span class="s1">&#39;</span>
<span class="s1">&#39;eta </span><span class="si">{eta}</span><span class="se">\t</span><span class="s1">&#39;</span>
<span class="s1">&#39;</span><span class="si">{losses}</span><span class="se">\t</span><span class="s1">&#39;</span>
<span class="s1">&#39;lr </span><span class="si">{lr:.6f}</span><span class="s1">&#39;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span>
<span class="bp">self</span><span class="o">.</span><span class="n">epoch</span> <span class="o">+</span> <span class="mi">1</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">max_epoch</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">batch_idx</span> <span class="o">+</span> <span class="mi">1</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_batches</span><span class="p">,</span>
<span class="n">batch_time</span><span class="o">=</span><span class="n">batch_time</span><span class="p">,</span>
<span class="n">data_time</span><span class="o">=</span><span class="n">data_time</span><span class="p">,</span>
<span class="n">eta</span><span class="o">=</span><span class="n">eta_str</span><span class="p">,</span>
<span class="n">losses</span><span class="o">=</span><span class="n">losses</span><span class="p">,</span>
<span class="n">lr</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">get_current_lr</span><span class="p">()</span>
<span class="p">)</span>
<span class="p">)</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">writer</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">n_iter</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">epoch</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_batches</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">batch_idx</span>
<span class="bp">self</span><span class="o">.</span><span class="n">writer</span><span class="o">.</span><span class="n">add_scalar</span><span class="p">(</span><span class="s1">&#39;Train/time&#39;</span><span class="p">,</span> <span class="n">batch_time</span><span class="o">.</span><span class="n">avg</span><span class="p">,</span> <span class="n">n_iter</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">writer</span><span class="o">.</span><span class="n">add_scalar</span><span class="p">(</span><span class="s1">&#39;Train/data&#39;</span><span class="p">,</span> <span class="n">data_time</span><span class="o">.</span><span class="n">avg</span><span class="p">,</span> <span class="n">n_iter</span><span class="p">)</span>
<span class="k">for</span> <span class="n">name</span><span class="p">,</span> <span class="n">meter</span> <span class="ow">in</span> <span class="n">losses</span><span class="o">.</span><span class="n">meters</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
<span class="bp">self</span><span class="o">.</span><span class="n">writer</span><span class="o">.</span><span class="n">add_scalar</span><span class="p">(</span><span class="s1">&#39;Train/&#39;</span> <span class="o">+</span> <span class="n">name</span><span class="p">,</span> <span class="n">meter</span><span class="o">.</span><span class="n">avg</span><span class="p">,</span> <span class="n">n_iter</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">writer</span><span class="o">.</span><span class="n">add_scalar</span><span class="p">(</span>
<span class="s1">&#39;Train/lr&#39;</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">get_current_lr</span><span class="p">(),</span> <span class="n">n_iter</span>
<span class="p">)</span>
<span class="n">end</span> <span class="o">=</span> <span class="n">time</span><span class="o">.</span><span class="n">time</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">update_lr</span><span class="p">()</span>
<span class="k">def</span> <span class="nf">forward_backward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">data</span><span class="p">):</span>
<span class="k">raise</span> <span class="ne">NotImplementedError</span>
<div class="viewcode-block" id="Engine.test"><a class="viewcode-back" href="../../../pkg/engine.html#torchreid.engine.engine.Engine.test">[docs]</a> <span class="k">def</span> <span class="nf">test</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span>
<span class="n">dist_metric</span><span class="o">=</span><span class="s1">&#39;euclidean&#39;</span><span class="p">,</span>
<span class="n">normalize_feature</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">visrank</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">visrank_topk</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span>
<span class="n">save_dir</span><span class="o">=</span><span class="s1">&#39;&#39;</span><span class="p">,</span>
<span class="n">use_metric_cuhk03</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">ranks</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">10</span><span class="p">,</span> <span class="mi">20</span><span class="p">],</span>
<span class="n">rerank</span><span class="o">=</span><span class="kc">False</span>
<span class="p">):</span>
<span class="sa">r</span><span class="sd">&quot;&quot;&quot;Tests model on target datasets.</span>
<span class="sd"> .. note::</span>
<span class="sd"> This function has been called in ``run()``.</span>
<span class="sd"> .. note::</span>
<span class="sd"> The test pipeline implemented in this function suits both image- and</span>
<span class="sd"> video-reid. In general, a subclass of Engine only needs to re-implement</span>
<span class="sd"> ``extract_features()`` and ``parse_data_for_eval()`` (most of the time),</span>
<span class="sd"> but not a must. Please refer to the source code for more details.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="bp">self</span><span class="o">.</span><span class="n">set_model_mode</span><span class="p">(</span><span class="s1">&#39;eval&#39;</span><span class="p">)</span>
<span class="n">targets</span> <span class="o">=</span> <span class="nb">list</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">test_loader</span><span class="o">.</span><span class="n">keys</span><span class="p">())</span>
<span class="k">for</span> <span class="n">name</span> <span class="ow">in</span> <span class="n">targets</span><span class="p">:</span>
<span class="n">domain</span> <span class="o">=</span> <span class="s1">&#39;source&#39;</span> <span class="k">if</span> <span class="n">name</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">datamanager</span><span class="o">.</span><span class="n">sources</span> <span class="k">else</span> <span class="s1">&#39;target&#39;</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;##### Evaluating </span><span class="si">{}</span><span class="s1"> (</span><span class="si">{}</span><span class="s1">) #####&#39;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">name</span><span class="p">,</span> <span class="n">domain</span><span class="p">))</span>
<span class="n">query_loader</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">test_loader</span><span class="p">[</span><span class="n">name</span><span class="p">][</span><span class="s1">&#39;query&#39;</span><span class="p">]</span>
<span class="n">gallery_loader</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">test_loader</span><span class="p">[</span><span class="n">name</span><span class="p">][</span><span class="s1">&#39;gallery&#39;</span><span class="p">]</span>
<span class="n">rank1</span><span class="p">,</span> <span class="n">mAP</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_evaluate</span><span class="p">(</span>
<span class="n">dataset_name</span><span class="o">=</span><span class="n">name</span><span class="p">,</span>
<span class="n">query_loader</span><span class="o">=</span><span class="n">query_loader</span><span class="p">,</span>
<span class="n">gallery_loader</span><span class="o">=</span><span class="n">gallery_loader</span><span class="p">,</span>
<span class="n">dist_metric</span><span class="o">=</span><span class="n">dist_metric</span><span class="p">,</span>
<span class="n">normalize_feature</span><span class="o">=</span><span class="n">normalize_feature</span><span class="p">,</span>
<span class="n">visrank</span><span class="o">=</span><span class="n">visrank</span><span class="p">,</span>
<span class="n">visrank_topk</span><span class="o">=</span><span class="n">visrank_topk</span><span class="p">,</span>
<span class="n">save_dir</span><span class="o">=</span><span class="n">save_dir</span><span class="p">,</span>
<span class="n">use_metric_cuhk03</span><span class="o">=</span><span class="n">use_metric_cuhk03</span><span class="p">,</span>
<span class="n">ranks</span><span class="o">=</span><span class="n">ranks</span><span class="p">,</span>
<span class="n">rerank</span><span class="o">=</span><span class="n">rerank</span>
<span class="p">)</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">writer</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">writer</span><span class="o">.</span><span class="n">add_scalar</span><span class="p">(</span><span class="sa">f</span><span class="s1">&#39;Test/</span><span class="si">{</span><span class="n">name</span><span class="si">}</span><span class="s1">/rank1&#39;</span><span class="p">,</span> <span class="n">rank1</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">epoch</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">writer</span><span class="o">.</span><span class="n">add_scalar</span><span class="p">(</span><span class="sa">f</span><span class="s1">&#39;Test/</span><span class="si">{</span><span class="n">name</span><span class="si">}</span><span class="s1">/mAP&#39;</span><span class="p">,</span> <span class="n">mAP</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">epoch</span><span class="p">)</span>
<span class="k">return</span> <span class="n">rank1</span></div>
<span class="nd">@torch</span><span class="o">.</span><span class="n">no_grad</span><span class="p">()</span>
<span class="k">def</span> <span class="nf">_evaluate</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span>
<span class="n">dataset_name</span><span class="o">=</span><span class="s1">&#39;&#39;</span><span class="p">,</span>
<span class="n">query_loader</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">gallery_loader</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">dist_metric</span><span class="o">=</span><span class="s1">&#39;euclidean&#39;</span><span class="p">,</span>
<span class="n">normalize_feature</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">visrank</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">visrank_topk</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span>
<span class="n">save_dir</span><span class="o">=</span><span class="s1">&#39;&#39;</span><span class="p">,</span>
<span class="n">use_metric_cuhk03</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">ranks</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">10</span><span class="p">,</span> <span class="mi">20</span><span class="p">],</span>
<span class="n">rerank</span><span class="o">=</span><span class="kc">False</span>
<span class="p">):</span>
<span class="n">batch_time</span> <span class="o">=</span> <span class="n">AverageMeter</span><span class="p">()</span>
<span class="k">def</span> <span class="nf">_feature_extraction</span><span class="p">(</span><span class="n">data_loader</span><span class="p">):</span>
<span class="n">f_</span><span class="p">,</span> <span class="n">pids_</span><span class="p">,</span> <span class="n">camids_</span> <span class="o">=</span> <span class="p">[],</span> <span class="p">[],</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">batch_idx</span><span class="p">,</span> <span class="n">data</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">data_loader</span><span class="p">):</span>
<span class="n">imgs</span><span class="p">,</span> <span class="n">pids</span><span class="p">,</span> <span class="n">camids</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">parse_data_for_eval</span><span class="p">(</span><span class="n">data</span><span class="p">)</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">use_gpu</span><span class="p">:</span>
<span class="n">imgs</span> <span class="o">=</span> <span class="n">imgs</span><span class="o">.</span><span class="n">cuda</span><span class="p">()</span>
<span class="n">end</span> <span class="o">=</span> <span class="n">time</span><span class="o">.</span><span class="n">time</span><span class="p">()</span>
<span class="n">features</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">extract_features</span><span class="p">(</span><span class="n">imgs</span><span class="p">)</span>
<span class="n">batch_time</span><span class="o">.</span><span class="n">update</span><span class="p">(</span><span class="n">time</span><span class="o">.</span><span class="n">time</span><span class="p">()</span> <span class="o">-</span> <span class="n">end</span><span class="p">)</span>
<span class="n">features</span> <span class="o">=</span> <span class="n">features</span><span class="o">.</span><span class="n">cpu</span><span class="p">()</span>
<span class="n">f_</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">features</span><span class="p">)</span>
<span class="n">pids_</span><span class="o">.</span><span class="n">extend</span><span class="p">(</span><span class="n">pids</span><span class="o">.</span><span class="n">tolist</span><span class="p">())</span>
<span class="n">camids_</span><span class="o">.</span><span class="n">extend</span><span class="p">(</span><span class="n">camids</span><span class="o">.</span><span class="n">tolist</span><span class="p">())</span>
<span class="n">f_</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">cat</span><span class="p">(</span><span class="n">f_</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span>
<span class="n">pids_</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">asarray</span><span class="p">(</span><span class="n">pids_</span><span class="p">)</span>
<span class="n">camids_</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">asarray</span><span class="p">(</span><span class="n">camids_</span><span class="p">)</span>
<span class="k">return</span> <span class="n">f_</span><span class="p">,</span> <span class="n">pids_</span><span class="p">,</span> <span class="n">camids_</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;Extracting features from query set ...&#39;</span><span class="p">)</span>
<span class="n">qf</span><span class="p">,</span> <span class="n">q_pids</span><span class="p">,</span> <span class="n">q_camids</span> <span class="o">=</span> <span class="n">_feature_extraction</span><span class="p">(</span><span class="n">query_loader</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;Done, obtained </span><span class="si">{}</span><span class="s1">-by-</span><span class="si">{}</span><span class="s1"> matrix&#39;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">qf</span><span class="o">.</span><span class="n">size</span><span class="p">(</span><span class="mi">0</span><span class="p">),</span> <span class="n">qf</span><span class="o">.</span><span class="n">size</span><span class="p">(</span><span class="mi">1</span><span class="p">)))</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;Extracting features from gallery set ...&#39;</span><span class="p">)</span>
<span class="n">gf</span><span class="p">,</span> <span class="n">g_pids</span><span class="p">,</span> <span class="n">g_camids</span> <span class="o">=</span> <span class="n">_feature_extraction</span><span class="p">(</span><span class="n">gallery_loader</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;Done, obtained </span><span class="si">{}</span><span class="s1">-by-</span><span class="si">{}</span><span class="s1"> matrix&#39;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">gf</span><span class="o">.</span><span class="n">size</span><span class="p">(</span><span class="mi">0</span><span class="p">),</span> <span class="n">gf</span><span class="o">.</span><span class="n">size</span><span class="p">(</span><span class="mi">1</span><span class="p">)))</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;Speed: </span><span class="si">{:.4f}</span><span class="s1"> sec/batch&#39;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">batch_time</span><span class="o">.</span><span class="n">avg</span><span class="p">))</span>
<span class="k">if</span> <span class="n">normalize_feature</span><span class="p">:</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;Normalzing features with L2 norm ...&#39;</span><span class="p">)</span>
<span class="n">qf</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">normalize</span><span class="p">(</span><span class="n">qf</span><span class="p">,</span> <span class="n">p</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">dim</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="n">gf</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">normalize</span><span class="p">(</span><span class="n">gf</span><span class="p">,</span> <span class="n">p</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">dim</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span>
<span class="s1">&#39;Computing distance matrix with metric=</span><span class="si">{}</span><span class="s1"> ...&#39;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">dist_metric</span><span class="p">)</span>
<span class="p">)</span>
<span class="n">distmat</span> <span class="o">=</span> <span class="n">metrics</span><span class="o">.</span><span class="n">compute_distance_matrix</span><span class="p">(</span><span class="n">qf</span><span class="p">,</span> <span class="n">gf</span><span class="p">,</span> <span class="n">dist_metric</span><span class="p">)</span>
<span class="n">distmat</span> <span class="o">=</span> <span class="n">distmat</span><span class="o">.</span><span class="n">numpy</span><span class="p">()</span>
<span class="k">if</span> <span class="n">rerank</span><span class="p">:</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;Applying person re-ranking ...&#39;</span><span class="p">)</span>
<span class="n">distmat_qq</span> <span class="o">=</span> <span class="n">metrics</span><span class="o">.</span><span class="n">compute_distance_matrix</span><span class="p">(</span><span class="n">qf</span><span class="p">,</span> <span class="n">qf</span><span class="p">,</span> <span class="n">dist_metric</span><span class="p">)</span>
<span class="n">distmat_gg</span> <span class="o">=</span> <span class="n">metrics</span><span class="o">.</span><span class="n">compute_distance_matrix</span><span class="p">(</span><span class="n">gf</span><span class="p">,</span> <span class="n">gf</span><span class="p">,</span> <span class="n">dist_metric</span><span class="p">)</span>
<span class="n">distmat</span> <span class="o">=</span> <span class="n">re_ranking</span><span class="p">(</span><span class="n">distmat</span><span class="p">,</span> <span class="n">distmat_qq</span><span class="p">,</span> <span class="n">distmat_gg</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;Computing CMC and mAP ...&#39;</span><span class="p">)</span>
<span class="n">cmc</span><span class="p">,</span> <span class="n">mAP</span> <span class="o">=</span> <span class="n">metrics</span><span class="o">.</span><span class="n">evaluate_rank</span><span class="p">(</span>
<span class="n">distmat</span><span class="p">,</span>
<span class="n">q_pids</span><span class="p">,</span>
<span class="n">g_pids</span><span class="p">,</span>
<span class="n">q_camids</span><span class="p">,</span>
<span class="n">g_camids</span><span class="p">,</span>
<span class="n">use_metric_cuhk03</span><span class="o">=</span><span class="n">use_metric_cuhk03</span>
<span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;** Results **&#39;</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;mAP: </span><span class="si">{:.1%}</span><span class="s1">&#39;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">mAP</span><span class="p">))</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;CMC curve&#39;</span><span class="p">)</span>
<span class="k">for</span> <span class="n">r</span> <span class="ow">in</span> <span class="n">ranks</span><span class="p">:</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;Rank-</span><span class="si">{:&lt;3}</span><span class="s1">: </span><span class="si">{:.1%}</span><span class="s1">&#39;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">r</span><span class="p">,</span> <span class="n">cmc</span><span class="p">[</span><span class="n">r</span> <span class="o">-</span> <span class="mi">1</span><span class="p">]))</span>
<span class="k">if</span> <span class="n">visrank</span><span class="p">:</span>
<span class="n">visualize_ranked_results</span><span class="p">(</span>
<span class="n">distmat</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">datamanager</span><span class="o">.</span><span class="n">fetch_test_loaders</span><span class="p">(</span><span class="n">dataset_name</span><span class="p">),</span>
<span class="bp">self</span><span class="o">.</span><span class="n">datamanager</span><span class="o">.</span><span class="n">data_type</span><span class="p">,</span>
<span class="n">width</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">datamanager</span><span class="o">.</span><span class="n">width</span><span class="p">,</span>
<span class="n">height</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">datamanager</span><span class="o">.</span><span class="n">height</span><span class="p">,</span>
<span class="n">save_dir</span><span class="o">=</span><span class="n">osp</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">save_dir</span><span class="p">,</span> <span class="s1">&#39;visrank_&#39;</span> <span class="o">+</span> <span class="n">dataset_name</span><span class="p">),</span>
<span class="n">topk</span><span class="o">=</span><span class="n">visrank_topk</span>
<span class="p">)</span>
<span class="k">return</span> <span class="n">cmc</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">mAP</span>
<span class="k">def</span> <span class="nf">compute_loss</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">criterion</span><span class="p">,</span> <span class="n">outputs</span><span class="p">,</span> <span class="n">targets</span><span class="p">):</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">outputs</span><span class="p">,</span> <span class="p">(</span><span class="nb">tuple</span><span class="p">,</span> <span class="nb">list</span><span class="p">)):</span>
<span class="n">loss</span> <span class="o">=</span> <span class="n">DeepSupervision</span><span class="p">(</span><span class="n">criterion</span><span class="p">,</span> <span class="n">outputs</span><span class="p">,</span> <span class="n">targets</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">loss</span> <span class="o">=</span> <span class="n">criterion</span><span class="p">(</span><span class="n">outputs</span><span class="p">,</span> <span class="n">targets</span><span class="p">)</span>
<span class="k">return</span> <span class="n">loss</span>
<span class="k">def</span> <span class="nf">extract_features</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="nb">input</span><span class="p">):</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">model</span><span class="p">(</span><span class="nb">input</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">parse_data_for_train</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">data</span><span class="p">):</span>
<span class="n">imgs</span> <span class="o">=</span> <span class="n">data</span><span class="p">[</span><span class="s1">&#39;img&#39;</span><span class="p">]</span>
<span class="n">pids</span> <span class="o">=</span> <span class="n">data</span><span class="p">[</span><span class="s1">&#39;pid&#39;</span><span class="p">]</span>
<span class="k">return</span> <span class="n">imgs</span><span class="p">,</span> <span class="n">pids</span>
<span class="k">def</span> <span class="nf">parse_data_for_eval</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">data</span><span class="p">):</span>
<span class="n">imgs</span> <span class="o">=</span> <span class="n">data</span><span class="p">[</span><span class="s1">&#39;img&#39;</span><span class="p">]</span>
<span class="n">pids</span> <span class="o">=</span> <span class="n">data</span><span class="p">[</span><span class="s1">&#39;pid&#39;</span><span class="p">]</span>
<span class="n">camids</span> <span class="o">=</span> <span class="n">data</span><span class="p">[</span><span class="s1">&#39;camid&#39;</span><span class="p">]</span>
<span class="k">return</span> <span class="n">imgs</span><span class="p">,</span> <span class="n">pids</span><span class="p">,</span> <span class="n">camids</span>
<div class="viewcode-block" id="Engine.two_stepped_transfer_learning"><a class="viewcode-back" href="../../../pkg/engine.html#torchreid.engine.engine.Engine.two_stepped_transfer_learning">[docs]</a> <span class="k">def</span> <span class="nf">two_stepped_transfer_learning</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span> <span class="n">epoch</span><span class="p">,</span> <span class="n">fixbase_epoch</span><span class="p">,</span> <span class="n">open_layers</span><span class="p">,</span> <span class="n">model</span><span class="o">=</span><span class="kc">None</span>
<span class="p">):</span>
<span class="sd">&quot;&quot;&quot;Two-stepped transfer learning.</span>
<span class="sd"> The idea is to freeze base layers for a certain number of epochs</span>
<span class="sd"> and then open all layers for training.</span>
<span class="sd"> Reference: https://arxiv.org/abs/1611.05244</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">model</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">model</span> <span class="k">if</span> <span class="n">model</span> <span class="ow">is</span> <span class="kc">None</span> <span class="k">else</span> <span class="n">model</span>
<span class="k">if</span> <span class="n">model</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">return</span>
<span class="k">if</span> <span class="p">(</span><span class="n">epoch</span> <span class="o">+</span> <span class="mi">1</span><span class="p">)</span> <span class="o">&lt;=</span> <span class="n">fixbase_epoch</span> <span class="ow">and</span> <span class="n">open_layers</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="nb">print</span><span class="p">(</span>
<span class="s1">&#39;* Only train </span><span class="si">{}</span><span class="s1"> (epoch: </span><span class="si">{}</span><span class="s1">/</span><span class="si">{}</span><span class="s1">)&#39;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span>
<span class="n">open_layers</span><span class="p">,</span> <span class="n">epoch</span> <span class="o">+</span> <span class="mi">1</span><span class="p">,</span> <span class="n">fixbase_epoch</span>
<span class="p">)</span>
<span class="p">)</span>
<span class="n">open_specified_layers</span><span class="p">(</span><span class="n">model</span><span class="p">,</span> <span class="n">open_layers</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">open_all_layers</span><span class="p">(</span><span class="n">model</span><span class="p">)</span></div></div>
</pre></div>
</div>
</div>
<footer>
<hr/>
<div role="contentinfo">
<p>
&copy; Copyright 2019, Kaiyang Zhou
</p>
</div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a
<a href="https://github.com/rtfd/sphinx_rtd_theme">theme</a>
provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
</body>
</html>