deep-person-reid/train_imgreid_xent.py

352 lines
14 KiB
Python

from __future__ import print_function
from __future__ import division
import os
import sys
import time
import datetime
import argparse
import os.path as osp
import numpy as np
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
from torch.optim import lr_scheduler
from torchreid.data_manager import ImageDataManager
from torchreid.transforms import build_transforms
from torchreid import models
from torchreid.losses import CrossEntropyLoss, DeepSupervision
from torchreid.utils.iotools import save_checkpoint, check_isfile
from torchreid.utils.avgmeter import AverageMeter
from torchreid.utils.logger import Logger
from torchreid.utils.torchtools import set_bn_to_eval, count_num_param
from torchreid.utils.reidtools import visualize_ranked_results
from torchreid.eval_metrics import evaluate
from torchreid.optimizers import init_optim
parser = argparse.ArgumentParser(description='Train image model with cross entropy loss')
# Datasets
parser.add_argument('--root', type=str, default='data',
help="root path to data directory")
parser.add_argument('-s', '--source', type=str, required=True, nargs='+')
parser.add_argument('-t', '--target', type=str, required=True, nargs='+')
parser.add_argument('-j', '--workers', default=4, type=int,
help="number of data loading workers (default: 4)")
parser.add_argument('--height', type=int, default=256,
help="height of an image (default: 256)")
parser.add_argument('--width', type=int, default=128,
help="width of an image (default: 128)")
parser.add_argument('--split-id', type=int, default=0,
help="split index (0-based)")
# CUHK03-specific setting
parser.add_argument('--cuhk03-labeled', action='store_true',
help="use labeled images, if false, detected images are used (default: False)")
parser.add_argument('--cuhk03-classic-split', action='store_true',
help="use classic split by Li et al. CVPR'14 (default: False)")
parser.add_argument('--use-metric-cuhk03', action='store_true',
help="use cuhk03-metric (default: False)")
# Optimization options
parser.add_argument('--optim', type=str, default='adam',
help="optimization algorithm (see optimizers.py)")
parser.add_argument('--max-epoch', default=60, type=int,
help="maximum epochs to run")
parser.add_argument('--start-epoch', default=0, type=int,
help="manual epoch number (useful on restarts)")
parser.add_argument('--train-batch', default=32, type=int,
help="train batch size")
parser.add_argument('--test-batch', default=100, type=int,
help="test batch size")
parser.add_argument('--lr', '--learning-rate', default=0.0003, type=float,
help="initial learning rate")
parser.add_argument('--stepsize', default=[20, 40], nargs='+', type=int,
help="stepsize to decay learning rate")
parser.add_argument('--gamma', default=0.1, type=float,
help="learning rate decay")
parser.add_argument('--weight-decay', default=5e-04, type=float,
help="weight decay (default: 5e-04)")
parser.add_argument('--fixbase-epoch', default=0, type=int,
help="epochs to fix base network (only train classifier, default: 0)")
parser.add_argument('--fixbase-lr', default=0.0003, type=float,
help="learning rate (when base network is frozen)")
parser.add_argument('--freeze-bn', action='store_true',
help="freeze running statistics in BatchNorm layers during training (default: False)")
parser.add_argument('--label-smooth', action='store_true',
help="use label smoothing regularizer in cross entropy loss")
# Architecture
parser.add_argument('-a', '--arch', type=str, default='resnet50', choices=models.get_names())
# Miscs
parser.add_argument('--print-freq', type=int, default=10,
help="print frequency")
parser.add_argument('--seed', type=int, default=1,
help="manual seed")
parser.add_argument('--resume', type=str, default='', metavar='PATH')
parser.add_argument('--load-weights', type=str, default='',
help="load pretrained weights but ignores layers that don't match in size")
parser.add_argument('--evaluate', action='store_true',
help="evaluation only")
parser.add_argument('--eval-step', type=int, default=-1,
help="run evaluation for every N epochs (set to -1 to test after training)")
parser.add_argument('--start-eval', type=int, default=0,
help="start to evaluate after specific epoch")
parser.add_argument('--save-dir', type=str, default='log')
parser.add_argument('--use-cpu', action='store_true',
help="use cpu")
parser.add_argument('--gpu-devices', default='0', type=str,
help='gpu device ids for CUDA_VISIBLE_DEVICES')
parser.add_argument('--use-avai-gpus', action='store_true',
help="use available gpus instead of specified devices (this is useful when using managed clusters)")
parser.add_argument('--visualize-ranks', action='store_true',
help="visualize ranked results, only available in evaluation mode (default: False)")
# global variables
args = parser.parse_args()
def main():
global args
torch.manual_seed(args.seed)
if not args.use_avai_gpus: os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_devices
use_gpu = torch.cuda.is_available()
if args.use_cpu: use_gpu = False
if not args.evaluate:
sys.stdout = Logger(osp.join(args.save_dir, 'log_train.txt'))
else:
sys.stdout = Logger(osp.join(args.save_dir, 'log_test.txt'))
print("==========\nArgs:{}\n==========".format(args))
if use_gpu:
print("Currently using GPU {}".format(args.gpu_devices))
cudnn.benchmark = True
torch.cuda.manual_seed_all(args.seed)
else:
print("Currently using CPU (GPU is highly recommended)")
transform_train = build_transforms(args.height, args.width, is_train=True)
transform_test = build_transforms(args.height, args.width, is_train=False)
pin_memory = True if use_gpu else False
dm = ImageDataManager(
args.source, args.target, args.root, args.split_id, transform_train, transform_test,
args.train_batch, args.test_batch, args.workers, pin_memory,
cuhk03_labeled=args.cuhk03_labeled, cuhk03_classic_split=args.cuhk03_classic_split
)
trainloader = dm.trainloader
testloader_dict = dm.testloader_dict
print("Initializing model: {}".format(args.arch))
model = models.init_model(name=args.arch, num_classes=dm.num_train_pids, loss={'xent'}, use_gpu=use_gpu)
print("Model size: {:.3f} M".format(count_num_param(model)))
criterion = CrossEntropyLoss(num_classes=dm.num_train_pids, use_gpu=use_gpu, label_smooth=args.label_smooth)
optimizer = init_optim(args.optim, model.parameters(), args.lr, args.weight_decay)
scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=args.stepsize, gamma=args.gamma)
if args.fixbase_epoch > 0:
if hasattr(model, 'classifier') and isinstance(model.classifier, nn.Module):
optimizer_tmp = init_optim(args.optim, model.classifier.parameters(), args.fixbase_lr, args.weight_decay)
else:
print("Warn: model has no attribute 'classifier' and fixbase_epoch is reset to 0")
args.fixbase_epoch = 0
if args.load_weights and check_isfile(args.load_weights):
# load pretrained weights but ignore layers that don't match in size
checkpoint = torch.load(args.load_weights)
pretrain_dict = checkpoint['state_dict']
model_dict = model.state_dict()
pretrain_dict = {k: v for k, v in pretrain_dict.items() if k in model_dict and model_dict[k].size() == v.size()}
model_dict.update(pretrain_dict)
model.load_state_dict(model_dict)
print("Loaded pretrained weights from '{}'".format(args.load_weights))
if args.resume and check_isfile(args.resume):
checkpoint = torch.load(args.resume)
model.load_state_dict(checkpoint['state_dict'])
args.start_epoch = checkpoint['epoch'] + 1
print("Loaded checkpoint from '{}'".format(args.resume))
print("- start_epoch: {}\n- rank1: {}".format(args.start_epoch, checkpoint['rank1']))
if use_gpu:
model = nn.DataParallel(model).cuda()
if args.evaluate:
print("Evaluate only")
for name in args.target:
print("Evaluating {} ...".format(name))
queryloader = testloader_dict[name]['query']
galleryloader = testloader_dict[name]['gallery']
distmat = test(model, queryloader, galleryloader, use_gpu, return_distmat=True)
if args.visualize_ranks:
visualize_ranked_results(
distmat, dataset,
save_dir=osp.join(args.save_dir, 'ranked_results', name),
topk=20
)
return
start_time = time.time()
train_time = 0
print("==> Start training")
if args.fixbase_epoch > 0:
print("Train classifier for {} epochs while keeping base network frozen".format(args.fixbase_epoch))
for epoch in range(args.fixbase_epoch):
start_train_time = time.time()
train(epoch, model, criterion, optimizer_tmp, trainloader, use_gpu, freeze_bn=True)
train_time += round(time.time() - start_train_time)
del optimizer_tmp
print("Now open all layers for training")
for epoch in range(args.start_epoch, args.max_epoch):
start_train_time = time.time()
train(epoch, model, criterion, optimizer, trainloader, use_gpu)
train_time += round(time.time() - start_train_time)
scheduler.step()
if (epoch + 1) > args.start_eval and args.eval_step > 0 and (epoch + 1) % args.eval_step == 0 or (epoch + 1) == args.max_epoch:
print("==> Test")
for name in args.target:
print("Evaluating {} ...".format(name))
queryloader = testloader_dict[name]['query']
galleryloader = testloader_dict[name]['gallery']
rank1 = test(model, queryloader, galleryloader, use_gpu)
if use_gpu:
state_dict = model.module.state_dict()
else:
state_dict = model.state_dict()
save_checkpoint({
'state_dict': state_dict,
'rank1': rank1,
'epoch': epoch,
}, False, osp.join(args.save_dir, 'checkpoint_ep' + str(epoch + 1) + '.pth.tar'))
elapsed = round(time.time() - start_time)
elapsed = str(datetime.timedelta(seconds=elapsed))
train_time = str(datetime.timedelta(seconds=train_time))
print("Finished. Total elapsed time (h:m:s): {}. Training time (h:m:s): {}.".format(elapsed, train_time))
def train(epoch, model, criterion, optimizer, trainloader, use_gpu, freeze_bn=False):
losses = AverageMeter()
batch_time = AverageMeter()
data_time = AverageMeter()
model.train()
if freeze_bn or args.freeze_bn:
model.apply(set_bn_to_eval)
end = time.time()
for batch_idx, (imgs, pids, _) in enumerate(trainloader):
data_time.update(time.time() - end)
if use_gpu:
imgs, pids = imgs.cuda(), pids.cuda()
outputs = model(imgs)
if isinstance(outputs, (tuple, list)):
loss = DeepSupervision(criterion, outputs, pids)
else:
loss = criterion(outputs, pids)
optimizer.zero_grad()
loss.backward()
optimizer.step()
batch_time.update(time.time() - end)
losses.update(loss.item(), pids.size(0))
if (batch_idx + 1) % args.print_freq == 0:
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.4f} ({data_time.avg:.4f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'.format(
epoch + 1, batch_idx + 1, len(trainloader), batch_time=batch_time,
data_time=data_time, loss=losses))
end = time.time()
def test(model, queryloader, galleryloader, use_gpu, ranks=[1, 5, 10, 20], return_distmat=False):
batch_time = AverageMeter()
model.eval()
with torch.no_grad():
qf, q_pids, q_camids = [], [], []
for batch_idx, (imgs, pids, camids) in enumerate(queryloader):
if use_gpu: imgs = imgs.cuda()
end = time.time()
features = model(imgs)
batch_time.update(time.time() - end)
features = features.data.cpu()
qf.append(features)
q_pids.extend(pids)
q_camids.extend(camids)
qf = torch.cat(qf, 0)
q_pids = np.asarray(q_pids)
q_camids = np.asarray(q_camids)
print("Extracted features for query set, obtained {}-by-{} matrix".format(qf.size(0), qf.size(1)))
gf, g_pids, g_camids = [], [], []
end = time.time()
for batch_idx, (imgs, pids, camids) in enumerate(galleryloader):
if use_gpu: imgs = imgs.cuda()
end = time.time()
features = model(imgs)
batch_time.update(time.time() - end)
features = features.data.cpu()
gf.append(features)
g_pids.extend(pids)
g_camids.extend(camids)
gf = torch.cat(gf, 0)
g_pids = np.asarray(g_pids)
g_camids = np.asarray(g_camids)
print("Extracted features for gallery set, obtained {}-by-{} matrix".format(gf.size(0), gf.size(1)))
print("==> BatchTime(s)/BatchSize(img): {:.3f}/{}".format(batch_time.avg, args.test_batch))
m, n = qf.size(0), gf.size(0)
distmat = torch.pow(qf, 2).sum(dim=1, keepdim=True).expand(m, n) + \
torch.pow(gf, 2).sum(dim=1, keepdim=True).expand(n, m).t()
distmat.addmm_(1, -2, qf, gf.t())
distmat = distmat.numpy()
print("Computing CMC and mAP")
cmc, mAP = evaluate(distmat, q_pids, g_pids, q_camids, g_camids, use_metric_cuhk03=args.use_metric_cuhk03)
print("Results ----------")
print("mAP: {:.1%}".format(mAP))
print("CMC curve")
for r in ranks:
print("Rank-{:<3}: {:.1%}".format(r, cmc[r-1]))
print("------------------")
if return_distmat:
return distmat
return cmc[0]
if __name__ == '__main__':
main()