deep-person-reid/torchreid/data/datasets/image/university1652.py

103 lines
3.8 KiB
Python

from __future__ import division, print_function, absolute_import
import re
import glob
import os.path as osp
import os
import gdown
from ..dataset import ImageDataset
class University1652(ImageDataset):
"""University-1652.
Reference:
- Zheng et al. University-1652: A Multi-view Multi-source Benchmark for Drone-based Geo-localization. ACM MM 2020.
URL: `<https://github.com/layumi/University1652-Baseline>`_
OneDrive:
https://studentutsedu-my.sharepoint.com/:u:/g/personal/12639605_student_uts_edu_au/Ecrz6xK-PcdCjFdpNb0T0s8B_9J5ynaUy3q63_XumjJyrA?e=z4hpcz
[Backup] GoogleDrive:
https://drive.google.com/file/d/1iVnP4gjw-iHXa0KerZQ1IfIO0i1jADsR/view?usp=sharing
[Backup] Baidu Yun:
https://pan.baidu.com/s/1H_wBnWwikKbaBY1pMPjoqQ password: hrqp
Dataset statistics:
- buildings: 1652 (train + query).
- The dataset split is as follows:
| Split | #imgs | #buildings | #universities|
| -------- | ----- | ----| ----|
| Training | 50,218 | 701 | 33 |
| Query_drone | 37,855 | 701 | 39 |
| Query_satellite | 701 | 701 | 39|
| Query_ground | 2,579 | 701 | 39|
| Gallery_drone | 51,355 | 951 | 39|
| Gallery_satellite | 951 | 951 | 39|
| Gallery_ground | 2,921 | 793 | 39|
- cameras: None.
datamanager = torchreid.data.ImageDataManager(
root='reid-data',
sources='university1652',
targets='university1652',
height=256,
width=256,
batch_size_train=32,
batch_size_test=100,
transforms=['random_flip', 'random_crop']
)
"""
dataset_dir = 'university1652'
dataset_url = 'https://drive.google.com/uc?id=1iVnP4gjw-iHXa0KerZQ1IfIO0i1jADsR'
def __init__(self, root='', **kwargs):
self.root = osp.abspath(osp.expanduser(root))
self.dataset_dir = osp.join(self.root, self.dataset_dir)
print(self.dataset_dir)
if not os.path.isdir(self.dataset_dir):
os.mkdir(self.dataset_dir)
gdown.download(self.dataset_url, self.dataset_dir+'data.zip', quiet=False)
os.system('unzip %s'%(self.dataset_dir+'data.zip'))
self.train_dir = osp.join(
self.dataset_dir,'University-Release/train/'
)
self.query_dir = osp.join(self.dataset_dir, 'University-Release/test/query_drone')
self.gallery_dir = osp.join(
self.dataset_dir, 'University-Release/test/gallery_satellite'
)
required_files = [
self.dataset_dir, self.train_dir, self.query_dir, self.gallery_dir
]
self.check_before_run(required_files)
self.fake_camid = 0
train = self.process_dir(self.train_dir, relabel=True, train=True)
query = self.process_dir(self.query_dir, relabel=False)
gallery = self.process_dir(self.gallery_dir, relabel=False)
super(University1652, self).__init__(train, query, gallery, **kwargs)
def process_dir(self, dir_path, relabel=False, train=False):
IMG_EXTENSIONS = ('.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif', '.tiff', '.webp')
if train:
img_paths = glob.glob(osp.join(dir_path, '*/*/*'))
else:
img_paths = glob.glob(osp.join(dir_path, '*/*'))
pid_container = set()
for img_path in img_paths:
if not img_path.lower().endswith(IMG_EXTENSIONS):
continue
pid = int(os.path.basename(os.path.dirname(img_path)))
pid_container.add(pid)
pid2label = {pid: label for label, pid in enumerate(pid_container)}
data = []
# no camera for university
for img_path in img_paths:
if not img_path.lower().endswith(IMG_EXTENSIONS):
continue
pid = int(os.path.basename(os.path.dirname(img_path)))
if relabel:
pid = pid2label[pid]
data.append((img_path, pid, self.fake_camid))
self.fake_camid +=1
return data