deep-person-reid/tools/export.py

205 lines
6.7 KiB
Python

import argparse
import os
import sys
import numpy as np
from pathlib import Path
import torch
import pandas as pd
import subprocess
from torchreid.utils.feature_extractor import FeatureExtractor
from torchreid.models import build_model
__model_types = [
'resnet50', 'mlfn', 'hacnn', 'mobilenetv2_x1_0', 'mobilenetv2_x1_4',
'osnet_x1_0', 'osnet_x0_75', 'osnet_x0_5', 'osnet_x0_25',
'osnet_ibn_x1_0', 'osnet_ain_x1_0']
def file_size(path):
# Return file/dir size (MB)
path = Path(path)
if path.is_file():
return path.stat().st_size / 1E6
elif path.is_dir():
return sum(f.stat().st_size for f in path.glob('**/*') if f.is_file()) / 1E6
else:
return 0.0
def get_model_name(model):
model = str(model).rsplit('/', 1)[-1].split('.')[0]
for x in __model_types:
if x in model:
return x
return None
def export_formats():
# YOLOv5 export formats
x = [
['PyTorch', '-', '.pt', True, True],
['ONNX', 'onnx', '.onnx', True, True],
['OpenVINO', 'openvino', '_openvino_model', True, False],
['TensorFlow Lite', 'tflite', '.tflite', True, False],
]
return pd.DataFrame(x, columns=['Format', 'Argument', 'Suffix', 'CPU', 'GPU'])
def export_onnx(model, im, file, opset, train=False, dynamic=True, simplify=False):
# ONNX export
try:
import onnx
f = file.with_suffix('.onnx')
print(f'\nStarting export with onnx {onnx.__version__}...')
torch.onnx.export(
model.cpu() if dynamic else model, # --dynamic only compatible with cpu
im.cpu() if dynamic else im,
f,
verbose=False,
opset_version=opset,
training=torch.onnx.TrainingMode.TRAINING if train else torch.onnx.TrainingMode.EVAL,
do_constant_folding=not train,
input_names=['images'],
output_names=['output'],
dynamic_axes={
'images': {
0: 'batch',
}, # shape(x,3,256,128)
'output': {
0: 'batch',
} # shape(x,2048)
} if dynamic else None
)
# Checks
model_onnx = onnx.load(f) # load onnx model
onnx.checker.check_model(model_onnx) # check onnx model
onnx.save(model_onnx, f)
# Simplify
if simplify:
try:
cuda = torch.cuda.is_available()
import onnxsim
print(f'simplifying with onnx-simplifier {onnxsim.__version__}...')
model_onnx, check = onnxsim.simplify(
model_onnx,
dynamic_input_shape=dynamic,
input_shapes={'t0': list(im.shape)} if dynamic else None)
assert check, 'assert check failed'
onnx.save(model_onnx, f)
except Exception as e:
print(f'simplifier failure: {e}')
print(f'export success, saved as {f} ({file_size(f):.1f} MB)')
print(f"run --dynamic ONNX model inference with: 'python detect.py --weights {f}'")
except Exception as e:
print(f'export failure: {e}')
return f
def export_openvino(file, dynamic, half):
f = str(file).replace('.onnx', f'_openvino_model{os.sep}')
# YOLOv5 OpenVINO export
try:
import openvino.inference_engine as ie
print(f'\nStarting export with openvino {ie.__version__}...')
f = str(file).replace('.onnx', f'_openvino_model{os.sep}')
dyn_shape = [-1,3,256,128] if dynamic else None
cmd = f"mo \
--input_model {file} \
--output_dir {f} \
--data_type {'FP16' if half else 'FP32'}"
if dyn_shape is not None:
cmd + f"--input_shape {dyn_shape}"
subprocess.check_output(cmd.split()) # export
print(f'Export success, saved as {f} ({file_size(f):.1f} MB)')
return f
except Exception as e:
print(f'\nExport failure: {e}')
return f
def export_tflite(file, half):
# YOLOv5 OpenVINO export
try:
import openvino.inference_engine as ie
print(f'\nStarting export with openvino {ie.__version__}...')
output = Path(str(file).replace(f'_openvino_model{os.sep}', f'_tflite_model{os.sep}'))
modelxml = list(Path(file).glob('*.xml'))[0]
cmd = f"openvino2tensorflow \
--model_path {modelxml} \
--model_output_path {output} \
--output_pb \
--output_saved_model \
--output_no_quant_float32_tflite \
--output_dynamic_range_quant_tflite"
subprocess.check_output(cmd.split()) # export
print(f'Export success, results saved in {output} ({file_size(f):.1f} MB)')
return f
except Exception as e:
print(f'\nExport failure: {e}')
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="CPHD train")
parser.add_argument(
"-d",
"--dynamic",
action="store_true",
help="dynamic model input",
)
parser.add_argument(
"-p",
"--weights",
type=Path,
default="./mobilenetv2_x1_0_msmt17.pt",
help="Path to weights",
)
parser.add_argument(
"-hp",
"--half_precision",
action="store_true",
help="transform model to half precision",
)
parser.add_argument(
'--imgsz', '--img', '--img-size',
nargs='+',
type=int,
default=[256, 128],
help='image (h, w)'
)
parser.add_argument('--include',
nargs='+',
default=['onnx', 'openvino', 'tflite'],
help='onnx, openvino, tflite')
args = parser.parse_args()
# Build model
extractor = FeatureExtractor(
# get rid of dataset information DeepSort model name
model_name=get_model_name(args.weights),
model_path=args.weights,
device=str('cpu')
)
include = [x.lower() for x in args.include] # to lowercase
fmts = tuple(export_formats()['Argument'][1:]) # --include arguments
flags = [x in include for x in fmts]
assert sum(flags) == len(include), f'ERROR: Invalid --include {include}, valid --include arguments are {fmts}'
onnx, openvino, tflite = flags # export booleans
im = torch.zeros(1, 3, args.imgsz[0], args.imgsz[1]).to('cpu') # image size(1,3,640,480) BCHW iDetection
if onnx:
f = export_onnx(extractor.model.eval(), im, args.weights, 12, train=False, dynamic=args.dynamic, simplify=True) # opset 12
if openvino:
f = export_openvino(f, dynamic=args.dynamic, half=False)
if tflite:
export_tflite(f, False)