205 lines
6.7 KiB
Python
205 lines
6.7 KiB
Python
import argparse
|
|
import os
|
|
import sys
|
|
import numpy as np
|
|
from pathlib import Path
|
|
import torch
|
|
import pandas as pd
|
|
import subprocess
|
|
|
|
from torchreid.utils.feature_extractor import FeatureExtractor
|
|
from torchreid.models import build_model
|
|
|
|
__model_types = [
|
|
'resnet50', 'mlfn', 'hacnn', 'mobilenetv2_x1_0', 'mobilenetv2_x1_4',
|
|
'osnet_x1_0', 'osnet_x0_75', 'osnet_x0_5', 'osnet_x0_25',
|
|
'osnet_ibn_x1_0', 'osnet_ain_x1_0']
|
|
|
|
def file_size(path):
|
|
# Return file/dir size (MB)
|
|
path = Path(path)
|
|
if path.is_file():
|
|
return path.stat().st_size / 1E6
|
|
elif path.is_dir():
|
|
return sum(f.stat().st_size for f in path.glob('**/*') if f.is_file()) / 1E6
|
|
else:
|
|
return 0.0
|
|
|
|
|
|
def get_model_name(model):
|
|
model = str(model).rsplit('/', 1)[-1].split('.')[0]
|
|
for x in __model_types:
|
|
if x in model:
|
|
return x
|
|
return None
|
|
|
|
def export_formats():
|
|
# YOLOv5 export formats
|
|
x = [
|
|
['PyTorch', '-', '.pt', True, True],
|
|
['ONNX', 'onnx', '.onnx', True, True],
|
|
['OpenVINO', 'openvino', '_openvino_model', True, False],
|
|
['TensorFlow Lite', 'tflite', '.tflite', True, False],
|
|
]
|
|
return pd.DataFrame(x, columns=['Format', 'Argument', 'Suffix', 'CPU', 'GPU'])
|
|
|
|
|
|
def export_onnx(model, im, file, opset, train=False, dynamic=True, simplify=False):
|
|
# ONNX export
|
|
try:
|
|
import onnx
|
|
|
|
f = file.with_suffix('.onnx')
|
|
print(f'\nStarting export with onnx {onnx.__version__}...')
|
|
|
|
torch.onnx.export(
|
|
model.cpu() if dynamic else model, # --dynamic only compatible with cpu
|
|
im.cpu() if dynamic else im,
|
|
f,
|
|
verbose=False,
|
|
opset_version=opset,
|
|
training=torch.onnx.TrainingMode.TRAINING if train else torch.onnx.TrainingMode.EVAL,
|
|
do_constant_folding=not train,
|
|
input_names=['images'],
|
|
output_names=['output'],
|
|
dynamic_axes={
|
|
'images': {
|
|
0: 'batch',
|
|
}, # shape(x,3,256,128)
|
|
'output': {
|
|
0: 'batch',
|
|
} # shape(x,2048)
|
|
} if dynamic else None
|
|
)
|
|
# Checks
|
|
model_onnx = onnx.load(f) # load onnx model
|
|
onnx.checker.check_model(model_onnx) # check onnx model
|
|
onnx.save(model_onnx, f)
|
|
|
|
# Simplify
|
|
if simplify:
|
|
try:
|
|
cuda = torch.cuda.is_available()
|
|
import onnxsim
|
|
|
|
print(f'simplifying with onnx-simplifier {onnxsim.__version__}...')
|
|
model_onnx, check = onnxsim.simplify(
|
|
model_onnx,
|
|
dynamic_input_shape=dynamic,
|
|
input_shapes={'t0': list(im.shape)} if dynamic else None)
|
|
assert check, 'assert check failed'
|
|
onnx.save(model_onnx, f)
|
|
except Exception as e:
|
|
print(f'simplifier failure: {e}')
|
|
print(f'export success, saved as {f} ({file_size(f):.1f} MB)')
|
|
print(f"run --dynamic ONNX model inference with: 'python detect.py --weights {f}'")
|
|
except Exception as e:
|
|
print(f'export failure: {e}')
|
|
return f
|
|
|
|
|
|
def export_openvino(file, dynamic, half):
|
|
f = str(file).replace('.onnx', f'_openvino_model{os.sep}')
|
|
# YOLOv5 OpenVINO export
|
|
try:
|
|
import openvino.inference_engine as ie
|
|
|
|
print(f'\nStarting export with openvino {ie.__version__}...')
|
|
f = str(file).replace('.onnx', f'_openvino_model{os.sep}')
|
|
dyn_shape = [-1,3,256,128] if dynamic else None
|
|
cmd = f"mo \
|
|
--input_model {file} \
|
|
--output_dir {f} \
|
|
--data_type {'FP16' if half else 'FP32'}"
|
|
|
|
if dyn_shape is not None:
|
|
cmd + f"--input_shape {dyn_shape}"
|
|
|
|
subprocess.check_output(cmd.split()) # export
|
|
|
|
print(f'Export success, saved as {f} ({file_size(f):.1f} MB)')
|
|
return f
|
|
except Exception as e:
|
|
print(f'\nExport failure: {e}')
|
|
return f
|
|
|
|
|
|
def export_tflite(file, half):
|
|
# YOLOv5 OpenVINO export
|
|
try:
|
|
import openvino.inference_engine as ie
|
|
print(f'\nStarting export with openvino {ie.__version__}...')
|
|
output = Path(str(file).replace(f'_openvino_model{os.sep}', f'_tflite_model{os.sep}'))
|
|
modelxml = list(Path(file).glob('*.xml'))[0]
|
|
cmd = f"openvino2tensorflow \
|
|
--model_path {modelxml} \
|
|
--model_output_path {output} \
|
|
--output_pb \
|
|
--output_saved_model \
|
|
--output_no_quant_float32_tflite \
|
|
--output_dynamic_range_quant_tflite"
|
|
subprocess.check_output(cmd.split()) # export
|
|
|
|
print(f'Export success, results saved in {output} ({file_size(f):.1f} MB)')
|
|
return f
|
|
except Exception as e:
|
|
print(f'\nExport failure: {e}')
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
parser = argparse.ArgumentParser(description="CPHD train")
|
|
parser.add_argument(
|
|
"-d",
|
|
"--dynamic",
|
|
action="store_true",
|
|
help="dynamic model input",
|
|
)
|
|
parser.add_argument(
|
|
"-p",
|
|
"--weights",
|
|
type=Path,
|
|
default="./mobilenetv2_x1_0_msmt17.pt",
|
|
help="Path to weights",
|
|
)
|
|
parser.add_argument(
|
|
"-hp",
|
|
"--half_precision",
|
|
action="store_true",
|
|
help="transform model to half precision",
|
|
)
|
|
parser.add_argument(
|
|
'--imgsz', '--img', '--img-size',
|
|
nargs='+',
|
|
type=int,
|
|
default=[256, 128],
|
|
help='image (h, w)'
|
|
)
|
|
parser.add_argument('--include',
|
|
nargs='+',
|
|
default=['onnx', 'openvino', 'tflite'],
|
|
help='onnx, openvino, tflite')
|
|
args = parser.parse_args()
|
|
|
|
# Build model
|
|
extractor = FeatureExtractor(
|
|
# get rid of dataset information DeepSort model name
|
|
model_name=get_model_name(args.weights),
|
|
model_path=args.weights,
|
|
device=str('cpu')
|
|
)
|
|
|
|
include = [x.lower() for x in args.include] # to lowercase
|
|
fmts = tuple(export_formats()['Argument'][1:]) # --include arguments
|
|
flags = [x in include for x in fmts]
|
|
assert sum(flags) == len(include), f'ERROR: Invalid --include {include}, valid --include arguments are {fmts}'
|
|
onnx, openvino, tflite = flags # export booleans
|
|
|
|
im = torch.zeros(1, 3, args.imgsz[0], args.imgsz[1]).to('cpu') # image size(1,3,640,480) BCHW iDetection
|
|
if onnx:
|
|
f = export_onnx(extractor.model.eval(), im, args.weights, 12, train=False, dynamic=args.dynamic, simplify=True) # opset 12
|
|
if openvino:
|
|
f = export_openvino(f, dynamic=args.dynamic, half=False)
|
|
if tflite:
|
|
export_tflite(f, False)
|