35 lines
1.0 KiB
Python
35 lines
1.0 KiB
Python
from __future__ import absolute_import
|
|
|
|
import torch
|
|
from torch import nn
|
|
from torch.nn import functional as F
|
|
from torch.autograd import Variable
|
|
import torchvision
|
|
|
|
__all__ = ['DenseNet121']
|
|
|
|
class DenseNet121(nn.Module):
|
|
def __init__(self, num_classes, loss={'xent'}, **kwargs):
|
|
super(DenseNet121, self).__init__()
|
|
self.loss = loss
|
|
densenet121 = torchvision.models.densenet121(pretrained=True)
|
|
self.base = densenet121.features
|
|
self.classifier = nn.Linear(1024, num_classes)
|
|
self.feat_dim = 1024 # feature dimension
|
|
|
|
def forward(self, x):
|
|
x = self.base(x)
|
|
x = F.avg_pool2d(x, x.size()[2:])
|
|
f = x.view(x.size(0), -1)
|
|
if not self.training:
|
|
return f
|
|
y = self.classifier(f)
|
|
|
|
if self.loss == {'xent'}:
|
|
return y
|
|
elif self.loss == {'xent', 'htri'}:
|
|
return y, f
|
|
elif self.loss == {'cent'}:
|
|
return y, f
|
|
else:
|
|
raise KeyError("Unsupported loss: {}".format(self.loss)) |