deep-person-reid/data_manager/ilidsvid.py

189 lines
7.8 KiB
Python

from __future__ import print_function, absolute_import
import os
import glob
import re
import sys
import urllib
import tarfile
import zipfile
import os.path as osp
from scipy.io import loadmat
import numpy as np
import h5py
from scipy.misc import imsave
from utils.iotools import mkdir_if_missing, write_json, read_json
class iLIDSVID(object):
"""
iLIDS-VID
Reference:
Wang et al. Person Re-Identification by Video Ranking. ECCV 2014.
URL: http://www.eecs.qmul.ac.uk/~xiatian/downloads_qmul_iLIDS-VID_ReID_dataset.html
Dataset statistics:
# identities: 300
# tracklets: 600
# cameras: 2
"""
dataset_dir = 'ilids-vid'
def __init__(self, root='data', split_id=0, verbose=True, **kwargs):
self.dataset_dir = osp.join(root, self.dataset_dir)
self.dataset_url = 'http://www.eecs.qmul.ac.uk/~xiatian/iLIDS-VID/iLIDS-VID.tar'
self.data_dir = osp.join(self.dataset_dir, 'i-LIDS-VID')
self.split_dir = osp.join(self.dataset_dir, 'train-test people splits')
self.split_mat_path = osp.join(self.split_dir, 'train_test_splits_ilidsvid.mat')
self.split_path = osp.join(self.dataset_dir, 'splits.json')
self.cam_1_path = osp.join(self.dataset_dir, 'i-LIDS-VID/sequences/cam1')
self.cam_2_path = osp.join(self.dataset_dir, 'i-LIDS-VID/sequences/cam2')
self._download_data()
self._check_before_run()
self._prepare_split()
splits = read_json(self.split_path)
if split_id >= len(splits):
raise ValueError("split_id exceeds range, received {}, but expected between 0 and {}".format(split_id, len(splits)-1))
split = splits[split_id]
train_dirs, test_dirs = split['train'], split['test']
print("# train identites: {}, # test identites {}".format(len(train_dirs), len(test_dirs)))
train, num_train_tracklets, num_train_pids, num_imgs_train = \
self._process_data(train_dirs, cam1=True, cam2=True)
query, num_query_tracklets, num_query_pids, num_imgs_query = \
self._process_data(test_dirs, cam1=True, cam2=False)
gallery, num_gallery_tracklets, num_gallery_pids, num_imgs_gallery = \
self._process_data(test_dirs, cam1=False, cam2=True)
num_imgs_per_tracklet = num_imgs_train + num_imgs_query + num_imgs_gallery
min_num = np.min(num_imgs_per_tracklet)
max_num = np.max(num_imgs_per_tracklet)
avg_num = np.mean(num_imgs_per_tracklet)
num_total_pids = num_train_pids + num_query_pids
num_total_tracklets = num_train_tracklets + num_query_tracklets + num_gallery_tracklets
if verbose:
print("=> iLIDS-VID loaded")
print("Dataset statistics:")
print(" ------------------------------")
print(" subset | # ids | # tracklets")
print(" ------------------------------")
print(" train | {:5d} | {:8d}".format(num_train_pids, num_train_tracklets))
print(" query | {:5d} | {:8d}".format(num_query_pids, num_query_tracklets))
print(" gallery | {:5d} | {:8d}".format(num_gallery_pids, num_gallery_tracklets))
print(" ------------------------------")
print(" total | {:5d} | {:8d}".format(num_total_pids, num_total_tracklets))
print(" number of images per tracklet: {} ~ {}, average {:.1f}".format(min_num, max_num, avg_num))
print(" ------------------------------")
self.train = train
self.query = query
self.gallery = gallery
self.num_train_pids = num_train_pids
self.num_query_pids = num_query_pids
self.num_gallery_pids = num_gallery_pids
def _download_data(self):
if osp.exists(self.dataset_dir):
print("This dataset has been downloaded.")
return
mkdir_if_missing(self.dataset_dir)
fpath = osp.join(self.dataset_dir, osp.basename(self.dataset_url))
print("Downloading iLIDS-VID dataset")
urllib.urlretrieve(self.dataset_url, fpath)
print("Extracting files")
tar = tarfile.open(fpath)
tar.extractall(path=self.dataset_dir)
tar.close()
def _check_before_run(self):
"""Check if all files are available before going deeper"""
if not osp.exists(self.dataset_dir):
raise RuntimeError("'{}' is not available".format(self.dataset_dir))
if not osp.exists(self.data_dir):
raise RuntimeError("'{}' is not available".format(self.data_dir))
if not osp.exists(self.split_dir):
raise RuntimeError("'{}' is not available".format(self.split_dir))
def _prepare_split(self):
if not osp.exists(self.split_path):
print("Creating splits")
mat_split_data = loadmat(self.split_mat_path)['ls_set']
num_splits = mat_split_data.shape[0]
num_total_ids = mat_split_data.shape[1]
assert num_splits == 10
assert num_total_ids == 300
num_ids_each = num_total_ids/2
# pids in mat_split_data are indices, so we need to transform them
# to real pids
person_cam1_dirs = sorted(glob.glob(osp.join(self.cam_1_path, '*')))
person_cam2_dirs = sorted(glob.glob(osp.join(self.cam_2_path, '*')))
person_cam1_dirs = [osp.basename(item) for item in person_cam1_dirs]
person_cam2_dirs = [osp.basename(item) for item in person_cam2_dirs]
# make sure persons in one camera view can be found in the other camera view
assert set(person_cam1_dirs) == set(person_cam2_dirs)
splits = []
for i_split in range(num_splits):
# first 50% for testing and the remaining for training, following Wang et al. ECCV'14.
train_idxs = sorted(list(mat_split_data[i_split,num_ids_each:]))
test_idxs = sorted(list(mat_split_data[i_split,:num_ids_each]))
train_idxs = [int(i)-1 for i in train_idxs]
test_idxs = [int(i)-1 for i in test_idxs]
# transform pids to person dir names
train_dirs = [person_cam1_dirs[i] for i in train_idxs]
test_dirs = [person_cam1_dirs[i] for i in test_idxs]
split = {'train': train_dirs, 'test': test_dirs}
splits.append(split)
print("Totally {} splits are created, following Wang et al. ECCV'14".format(len(splits)))
print("Split file is saved to {}".format(self.split_path))
write_json(splits, self.split_path)
print("Splits created")
def _process_data(self, dirnames, cam1=True, cam2=True):
tracklets = []
num_imgs_per_tracklet = []
dirname2pid = {dirname:i for i, dirname in enumerate(dirnames)}
for dirname in dirnames:
if cam1:
person_dir = osp.join(self.cam_1_path, dirname)
img_names = glob.glob(osp.join(person_dir, '*.png'))
assert len(img_names) > 0
img_names = tuple(img_names)
pid = dirname2pid[dirname]
tracklets.append((img_names, pid, 0))
num_imgs_per_tracklet.append(len(img_names))
if cam2:
person_dir = osp.join(self.cam_2_path, dirname)
img_names = glob.glob(osp.join(person_dir, '*.png'))
assert len(img_names) > 0
img_names = tuple(img_names)
pid = dirname2pid[dirname]
tracklets.append((img_names, pid, 1))
num_imgs_per_tracklet.append(len(img_names))
num_tracklets = len(tracklets)
num_pids = len(dirnames)
return tracklets, num_tracklets, num_pids, num_imgs_per_tracklet