Model Zoo
- Results are presented in the format of <Rank-1 (mAP)>.
- When computing model size and FLOPs, only layers that are used at test time are considered (see
torchreid.utils.compute_model_complexity
).
- Asterisk (*) means the model is trained from scratch.
combineall=True
means all images in the dataset are used for model training.
- Why not use heavy data augmentation like random erasing for model training? It's because heavy data augmentation might harm the cross-dataset generalization performance (see this paper).
ImageNet pretrained models
Same-domain ReID
Model |
# Param (10^6) |
GFLOPs |
Loss |
Input |
Transforms |
Distance |
market1501 |
dukemtmcreid |
msmt17 |
resnet50 |
23.5 |
2.7 |
softmax |
(256, 128) |
random_flip , random_crop |
euclidean |
87.9 (70.4) |
78.3 (58.9) |
63.2 (33.9) |
resnet50_fc512 |
24.6 |
4.1 |
softmax |
(256, 128) |
random_flip , random_crop |
euclidean |
90.8 (75.3) |
81.0 (64.0) |
69.6 (38.4) |
mlfn |
32.5 |
2.8 |
softmax |
(256, 128) |
random_flip , random_crop |
euclidean |
90.1 (74.3) |
81.1 (63.2) |
66.4 (37.2) |
hacnn* |
4.5 |
0.5 |
softmax |
(160, 64) |
random_flip , random_crop |
euclidean |
90.9 (75.6) |
80.1 (63.2) |
64.7 (37.2) |
mobilenetv2_x1_0 |
2.2 |
0.2 |
softmax |
(256, 128) |
random_flip , random_crop |
euclidean |
85.6 (67.3) |
74.2 (54.7) |
57.4 (29.3) |
mobilenetv2_x1_4 |
4.3 |
0.4 |
softmax |
(256, 128) |
random_flip , random_crop |
euclidean |
87.0 (68.5) |
76.2 (55.8) |
60.1 (31.5) |
osnet_x1_0 |
2.2 |
0.98 |
softmax |
(256, 128) |
random_flip |
euclidean |
94.2 (82.6) |
87.0 (70.2) |
74.9 (43.8) |
osnet_x0_75 |
1.3 |
0.57 |
softmax |
(256, 128) |
random_flip |
euclidean |
93.7 (81.2) |
85.8 (69.8) |
72.8 (41.4) |
osnet_x0_5 |
0.6 |
0.27 |
softmax |
(256, 128) |
random_flip |
euclidean |
92.5 (79.8) |
85.1 (67.4) |
69.7 (37.5) |
osnet_x0_25 |
0.2 |
0.08 |
softmax |
(256, 128) |
random_flip |
euclidean |
91.2 (75.0) |
82.0 (61.4) |
61.4 (29.5) |
Cross-domain ReID
Market1501 -> DukeMTMC-reID
Model |
# Param (10^6) |
GFLOPs |
Loss |
Input |
Transforms |
Distance |
Rank-1 |
Rank-5 |
Rank-10 |
mAP |
Download |
osnet_ibn_x1_0 |
2.2 |
0.98 |
softmax |
(256, 128) |
random_flip , color_jitter |
euclidean |
48.5 |
62.3 |
67.4 |
26.7 |
model |
osnet_ain_x1_0 |
2.2 |
0.98 |
softmax |
(256, 128) |
random_flip , color_jitter |
cosine |
52.4 |
66.1 |
71.2 |
30.5 |
model |
DukeMTMC-reID -> Market1501
Model |
# Param (10^6) |
GFLOPs |
Loss |
Input |
Transforms |
Distance |
Rank-1 |
Rank-5 |
Rank-10 |
mAP |
Download |
osnet_ibn_x1_0 |
2.2 |
0.98 |
softmax |
(256, 128) |
random_flip , color_jitter |
euclidean |
57.7 |
73.7 |
80.0 |
26.1 |
model |
osnet_ain_x1_0 |
2.2 |
0.98 |
softmax |
(256, 128) |
random_flip , color_jitter |
cosine |
61.0 |
77.0 |
82.5 |
30.6 |
model |
MSMT17 (combineall=True
) -> Market1501 & DukeMTMC-reID
Model |
# Param (10^6) |
GFLOPs |
Loss |
Input |
Transforms |
Distance |
msmt17 -> market1501 |
msmt17 -> dukemtmcreid |
Download |
resnet50 |
23.5 |
2.7 |
softmax |
(256, 128) |
random_flip , color_jitter |
euclidean |
46.3 (22.8) |
52.3 (32.1) |
model |
osnet_x1_0 |
2.2 |
0.98 |
softmax |
(256, 128) |
random_flip , color_jitter |
euclidean |
66.6 (37.5) |
66.0 (45.3) |
model |
osnet_x0_75 |
1.3 |
0.57 |
softmax |
(256, 128) |
random_flip , color_jitter |
euclidean |
63.6 (35.5) |
65.3 (44.5) |
model |
osnet_x0_5 |
0.6 |
0.27 |
softmax |
(256, 128) |
random_flip , color_jitter |
euclidean |
64.3 (34.9) |
65.2 (43.3) |
model |
osnet_x0_25 |
0.2 |
0.08 |
softmax |
(256, 128) |
random_flip , color_jitter |
euclidean |
59.9 (31.0) |
61.5 (39.6) |
model |
osnet_ibn_x1_0 |
2.2 |
0.98 |
softmax |
(256, 128) |
random_flip , color_jitter |
euclidean |
66.5 (37.2) |
67.4 (45.6) |
model |
osnet_ain_x1_0 |
2.2 |
0.98 |
softmax |
(256, 128) |
random_flip , color_jitter |
cosine |
70.1 (43.3) |
71.1 (52.7) |
model |
Multi-source domain generalization
The models below are trained using multiple source datasets, as described in Zhou et al. TPAMI'21.
Regarding the abbreviations, MS is MSMT17; M is Market1501; D is DukeMTMC-reID; and C is CUHK03.
All models were trained with im_osnet_ain_x1_0_softmax_256x128_amsgrad_cosine.yaml and max_epoch=50
.