Torchreid: Deep learning person re-identification in PyTorch.
 
 
 
 
Go to file
KaiyangZhou c3f0160215 update readme 2018-03-12 11:11:24 +00:00
models update 2018-03-11 23:02:44 +00:00
.gitignore first commit 2018-03-11 21:17:48 +00:00
README.md update readme 2018-03-12 11:11:24 +00:00
data_manager.py first commit 2018-03-11 21:17:48 +00:00
dataset_loader.py first commit 2018-03-11 21:17:48 +00:00
eval_metrics.py debug mAP 2018-03-11 22:20:10 +00:00
losses.py first commit 2018-03-11 21:17:48 +00:00
samplers.py first commit 2018-03-11 21:17:48 +00:00
train_img_model_xent.py update 2018-03-11 23:24:47 +00:00
transforms.py first commit 2018-03-11 21:17:48 +00:00
utils.py import torch in utils 2018-03-12 10:29:35 +00:00

README.md

deep-person-reid

This repo contains pytorch implementations of deep person re-identification approaches.

We will actively maintain this repo.

Pretrained models

Prepare data

Train

Test

Results

Setup

  • Image size: 256-by-128
  • Optimizer: Adam [6]
  • Loss functions:
    xent: cross entropy + label smoothing regularizer [5]
    htri: triplet loss with hard positive/negative mining [4]

Market1501

Model Size (M) Loss Rank-1 / -5 / -10 (%) mAP (%) Reported Rank Reported mAP
ResNet50 [1] 25.05 xent 85.8 / 94.4 / 96.3 70.1
ResNet50M [2] 30.01 xent 88.8 / 95.3 / 97.0 74.4 89.9 / - / - 75.6
DenseNet121 [3] 7.72 xent

References

[1] He et al. Deep Residual Learning for Image Recognition. CVPR 2016.
[2] Yu et al. The Devil is in the Middle: Exploiting Mid-level Representations for Cross-Domain Instance Matching. arXiv:1711.08106.
[3] Huang et al. Densely Connected Convolutional Networks. CVPR 2017.
[4] Hermans et al. In Defense of the Triplet Loss for Person Re-Identification. arXiv:1703.07737.
[5] Szegedy et al. Rethinking the Inception Architecture for Computer Vision. CVPR 2016.
[6] Kingma and Ba. Adam: A Method for Stochastic Optimization. ICLR 2015.