deep-person-reid/_modules/torchreid/engine/image/triplet.html

359 lines
27 KiB
HTML

<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>torchreid.engine.image.triplet &mdash; torchreid 0.7.7 documentation</title>
<script type="text/javascript" src="../../../../_static/js/modernizr.min.js"></script>
<script type="text/javascript" id="documentation_options" data-url_root="../../../../" src="../../../../_static/documentation_options.js"></script>
<script type="text/javascript" src="../../../../_static/jquery.js"></script>
<script type="text/javascript" src="../../../../_static/underscore.js"></script>
<script type="text/javascript" src="../../../../_static/doctools.js"></script>
<script type="text/javascript" src="../../../../_static/language_data.js"></script>
<script async="async" type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-AMS-MML_HTMLorMML"></script>
<script type="text/javascript" src="../../../../_static/js/theme.js"></script>
<link rel="stylesheet" href="../../../../_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="../../../../_static/pygments.css" type="text/css" />
<link rel="index" title="Index" href="../../../../genindex.html" />
<link rel="search" title="Search" href="../../../../search.html" />
</head>
<body class="wy-body-for-nav">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
<div class="wy-side-scroll">
<div class="wy-side-nav-search" >
<a href="../../../../index.html" class="icon icon-home"> torchreid
</a>
<div class="version">
0.7.7
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../../../../search.html" method="get">
<input type="text" name="q" placeholder="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html">How-to</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../datasets.html">Datasets</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../evaluation.html">Evaluation</a></li>
</ul>
<p class="caption"><span class="caption-text">Package Reference</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../../../pkg/data.html">torchreid.data</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../pkg/engine.html">torchreid.engine</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../pkg/losses.html">torchreid.losses</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../pkg/metrics.html">torchreid.metrics</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../pkg/models.html">torchreid.models</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../pkg/optim.html">torchreid.optim</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../pkg/utils.html">torchreid.utils</a></li>
</ul>
<p class="caption"><span class="caption-text">Resources</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../../../AWESOME_REID.html">Awesome-ReID</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../MODEL_ZOO.html">Model Zoo</a></li>
</ul>
</div>
</div>
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
<nav class="wy-nav-top" aria-label="top navigation">
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="../../../../index.html">torchreid</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="wy-breadcrumbs">
<li><a href="../../../../index.html">Docs</a> &raquo;</li>
<li><a href="../../../index.html">Module code</a> &raquo;</li>
<li>torchreid.engine.image.triplet</li>
<li class="wy-breadcrumbs-aside">
</li>
</ul>
<hr/>
</div>
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<h1>Source code for torchreid.engine.image.triplet</h1><div class="highlight"><pre>
<span></span><span class="kn">from</span> <span class="nn">__future__</span> <span class="k">import</span> <span class="n">absolute_import</span>
<span class="kn">from</span> <span class="nn">__future__</span> <span class="k">import</span> <span class="n">print_function</span>
<span class="kn">from</span> <span class="nn">__future__</span> <span class="k">import</span> <span class="n">division</span>
<span class="kn">import</span> <span class="nn">time</span>
<span class="kn">import</span> <span class="nn">datetime</span>
<span class="kn">import</span> <span class="nn">torch</span>
<span class="kn">import</span> <span class="nn">torchreid</span>
<span class="kn">from</span> <span class="nn">torchreid.engine</span> <span class="k">import</span> <span class="n">engine</span>
<span class="kn">from</span> <span class="nn">torchreid.losses</span> <span class="k">import</span> <span class="n">CrossEntropyLoss</span><span class="p">,</span> <span class="n">TripletLoss</span>
<span class="kn">from</span> <span class="nn">torchreid.utils</span> <span class="k">import</span> <span class="n">AverageMeter</span><span class="p">,</span> <span class="n">open_specified_layers</span><span class="p">,</span> <span class="n">open_all_layers</span>
<span class="kn">from</span> <span class="nn">torchreid</span> <span class="k">import</span> <span class="n">metrics</span>
<div class="viewcode-block" id="ImageTripletEngine"><a class="viewcode-back" href="../../../../pkg/engine.html#torchreid.engine.image.triplet.ImageTripletEngine">[docs]</a><span class="k">class</span> <span class="nc">ImageTripletEngine</span><span class="p">(</span><span class="n">engine</span><span class="o">.</span><span class="n">Engine</span><span class="p">):</span>
<span class="sa">r</span><span class="sd">&quot;&quot;&quot;Triplet-loss engine for image-reid.</span>
<span class="sd"> Args:</span>
<span class="sd"> datamanager (DataManager): an instance of ``torchreid.data.ImageDataManager``</span>
<span class="sd"> or ``torchreid.data.VideoDataManager``.</span>
<span class="sd"> model (nn.Module): model instance.</span>
<span class="sd"> optimizer (Optimizer): an Optimizer.</span>
<span class="sd"> margin (float, optional): margin for triplet loss. Default is 0.3.</span>
<span class="sd"> weight_t (float, optional): weight for triplet loss. Default is 1.</span>
<span class="sd"> weight_x (float, optional): weight for softmax loss. Default is 1.</span>
<span class="sd"> scheduler (LRScheduler, optional): if None, no learning rate decay will be performed.</span>
<span class="sd"> use_cpu (bool, optional): use cpu. Default is False.</span>
<span class="sd"> label_smooth (bool, optional): use label smoothing regularizer. Default is True.</span>
<span class="sd"> Examples::</span>
<span class="sd"> </span>
<span class="sd"> import torch</span>
<span class="sd"> import torchreid</span>
<span class="sd"> datamanager = torchreid.data.ImageDataManager(</span>
<span class="sd"> root=&#39;path/to/reid-data&#39;,</span>
<span class="sd"> sources=&#39;market1501&#39;,</span>
<span class="sd"> height=256,</span>
<span class="sd"> width=128,</span>
<span class="sd"> combineall=False,</span>
<span class="sd"> batch_size=32,</span>
<span class="sd"> num_instances=4,</span>
<span class="sd"> train_sampler=&#39;RandomIdentitySampler&#39; # this is important</span>
<span class="sd"> )</span>
<span class="sd"> model = torchreid.models.build_model(</span>
<span class="sd"> name=&#39;resnet50&#39;,</span>
<span class="sd"> num_classes=datamanager.num_train_pids,</span>
<span class="sd"> loss=&#39;triplet&#39;</span>
<span class="sd"> )</span>
<span class="sd"> model = model.cuda()</span>
<span class="sd"> optimizer = torchreid.optim.build_optimizer(</span>
<span class="sd"> model, optim=&#39;adam&#39;, lr=0.0003</span>
<span class="sd"> )</span>
<span class="sd"> scheduler = torchreid.optim.build_lr_scheduler(</span>
<span class="sd"> optimizer,</span>
<span class="sd"> lr_scheduler=&#39;single_step&#39;,</span>
<span class="sd"> stepsize=20</span>
<span class="sd"> )</span>
<span class="sd"> engine = torchreid.engine.ImageTripletEngine(</span>
<span class="sd"> datamanager, model, optimizer, margin=0.3,</span>
<span class="sd"> weight_t=0.7, weight_x=1, scheduler=scheduler</span>
<span class="sd"> )</span>
<span class="sd"> engine.run(</span>
<span class="sd"> max_epoch=60,</span>
<span class="sd"> save_dir=&#39;log/resnet50-triplet-market1501&#39;,</span>
<span class="sd"> print_freq=10</span>
<span class="sd"> )</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">datamanager</span><span class="p">,</span> <span class="n">model</span><span class="p">,</span> <span class="n">optimizer</span><span class="p">,</span> <span class="n">margin</span><span class="o">=</span><span class="mf">0.3</span><span class="p">,</span>
<span class="n">weight_t</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">weight_x</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">scheduler</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">use_cpu</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">label_smooth</span><span class="o">=</span><span class="kc">True</span><span class="p">):</span>
<span class="nb">super</span><span class="p">(</span><span class="n">ImageTripletEngine</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">datamanager</span><span class="p">,</span> <span class="n">model</span><span class="p">,</span> <span class="n">optimizer</span><span class="p">,</span> <span class="n">scheduler</span><span class="p">,</span> <span class="n">use_cpu</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">weight_t</span> <span class="o">=</span> <span class="n">weight_t</span>
<span class="bp">self</span><span class="o">.</span><span class="n">weight_x</span> <span class="o">=</span> <span class="n">weight_x</span>
<span class="bp">self</span><span class="o">.</span><span class="n">criterion_t</span> <span class="o">=</span> <span class="n">TripletLoss</span><span class="p">(</span><span class="n">margin</span><span class="o">=</span><span class="n">margin</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">criterion_x</span> <span class="o">=</span> <span class="n">CrossEntropyLoss</span><span class="p">(</span>
<span class="n">num_classes</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">datamanager</span><span class="o">.</span><span class="n">num_train_pids</span><span class="p">,</span>
<span class="n">use_gpu</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">use_gpu</span><span class="p">,</span>
<span class="n">label_smooth</span><span class="o">=</span><span class="n">label_smooth</span>
<span class="p">)</span>
<div class="viewcode-block" id="ImageTripletEngine.train"><a class="viewcode-back" href="../../../../pkg/engine.html#torchreid.engine.image.triplet.ImageTripletEngine.train">[docs]</a> <span class="k">def</span> <span class="nf">train</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">epoch</span><span class="p">,</span> <span class="n">max_epoch</span><span class="p">,</span> <span class="n">trainloader</span><span class="p">,</span> <span class="n">fixbase_epoch</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">open_layers</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">print_freq</span><span class="o">=</span><span class="mi">10</span><span class="p">):</span>
<span class="n">losses_t</span> <span class="o">=</span> <span class="n">AverageMeter</span><span class="p">()</span>
<span class="n">losses_x</span> <span class="o">=</span> <span class="n">AverageMeter</span><span class="p">()</span>
<span class="n">accs</span> <span class="o">=</span> <span class="n">AverageMeter</span><span class="p">()</span>
<span class="n">batch_time</span> <span class="o">=</span> <span class="n">AverageMeter</span><span class="p">()</span>
<span class="n">data_time</span> <span class="o">=</span> <span class="n">AverageMeter</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">model</span><span class="o">.</span><span class="n">train</span><span class="p">()</span>
<span class="k">if</span> <span class="p">(</span><span class="n">epoch</span><span class="o">+</span><span class="mi">1</span><span class="p">)</span><span class="o">&lt;=</span><span class="n">fixbase_epoch</span> <span class="ow">and</span> <span class="n">open_layers</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;* Only train </span><span class="si">{}</span><span class="s1"> (epoch: </span><span class="si">{}</span><span class="s1">/</span><span class="si">{}</span><span class="s1">)&#39;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">open_layers</span><span class="p">,</span> <span class="n">epoch</span><span class="o">+</span><span class="mi">1</span><span class="p">,</span> <span class="n">fixbase_epoch</span><span class="p">))</span>
<span class="n">open_specified_layers</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">model</span><span class="p">,</span> <span class="n">open_layers</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">open_all_layers</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">model</span><span class="p">)</span>
<span class="n">end</span> <span class="o">=</span> <span class="n">time</span><span class="o">.</span><span class="n">time</span><span class="p">()</span>
<span class="k">for</span> <span class="n">batch_idx</span><span class="p">,</span> <span class="n">data</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">trainloader</span><span class="p">):</span>
<span class="n">data_time</span><span class="o">.</span><span class="n">update</span><span class="p">(</span><span class="n">time</span><span class="o">.</span><span class="n">time</span><span class="p">()</span> <span class="o">-</span> <span class="n">end</span><span class="p">)</span>
<span class="n">imgs</span><span class="p">,</span> <span class="n">pids</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_parse_data_for_train</span><span class="p">(</span><span class="n">data</span><span class="p">)</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">use_gpu</span><span class="p">:</span>
<span class="n">imgs</span> <span class="o">=</span> <span class="n">imgs</span><span class="o">.</span><span class="n">cuda</span><span class="p">()</span>
<span class="n">pids</span> <span class="o">=</span> <span class="n">pids</span><span class="o">.</span><span class="n">cuda</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">optimizer</span><span class="o">.</span><span class="n">zero_grad</span><span class="p">()</span>
<span class="n">outputs</span><span class="p">,</span> <span class="n">features</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">model</span><span class="p">(</span><span class="n">imgs</span><span class="p">)</span>
<span class="n">loss_t</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_compute_loss</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">criterion_t</span><span class="p">,</span> <span class="n">features</span><span class="p">,</span> <span class="n">pids</span><span class="p">)</span>
<span class="n">loss_x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_compute_loss</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">criterion_x</span><span class="p">,</span> <span class="n">outputs</span><span class="p">,</span> <span class="n">pids</span><span class="p">)</span>
<span class="n">loss</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">weight_t</span> <span class="o">*</span> <span class="n">loss_t</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">weight_x</span> <span class="o">*</span> <span class="n">loss_x</span>
<span class="n">loss</span><span class="o">.</span><span class="n">backward</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">optimizer</span><span class="o">.</span><span class="n">step</span><span class="p">()</span>
<span class="n">batch_time</span><span class="o">.</span><span class="n">update</span><span class="p">(</span><span class="n">time</span><span class="o">.</span><span class="n">time</span><span class="p">()</span> <span class="o">-</span> <span class="n">end</span><span class="p">)</span>
<span class="n">losses_t</span><span class="o">.</span><span class="n">update</span><span class="p">(</span><span class="n">loss_t</span><span class="o">.</span><span class="n">item</span><span class="p">(),</span> <span class="n">pids</span><span class="o">.</span><span class="n">size</span><span class="p">(</span><span class="mi">0</span><span class="p">))</span>
<span class="n">losses_x</span><span class="o">.</span><span class="n">update</span><span class="p">(</span><span class="n">loss_x</span><span class="o">.</span><span class="n">item</span><span class="p">(),</span> <span class="n">pids</span><span class="o">.</span><span class="n">size</span><span class="p">(</span><span class="mi">0</span><span class="p">))</span>
<span class="n">accs</span><span class="o">.</span><span class="n">update</span><span class="p">(</span><span class="n">metrics</span><span class="o">.</span><span class="n">accuracy</span><span class="p">(</span><span class="n">outputs</span><span class="p">,</span> <span class="n">pids</span><span class="p">)[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">item</span><span class="p">())</span>
<span class="k">if</span> <span class="p">(</span><span class="n">batch_idx</span><span class="o">+</span><span class="mi">1</span><span class="p">)</span> <span class="o">%</span> <span class="n">print_freq</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span>
<span class="c1"># estimate remaining time</span>
<span class="n">num_batches</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">trainloader</span><span class="p">)</span>
<span class="n">eta_seconds</span> <span class="o">=</span> <span class="n">batch_time</span><span class="o">.</span><span class="n">avg</span> <span class="o">*</span> <span class="p">(</span><span class="n">num_batches</span><span class="o">-</span><span class="p">(</span><span class="n">batch_idx</span><span class="o">+</span><span class="mi">1</span><span class="p">)</span> <span class="o">+</span> <span class="p">(</span><span class="n">max_epoch</span><span class="o">-</span><span class="p">(</span><span class="n">epoch</span><span class="o">+</span><span class="mi">1</span><span class="p">))</span><span class="o">*</span><span class="n">num_batches</span><span class="p">)</span>
<span class="n">eta_str</span> <span class="o">=</span> <span class="nb">str</span><span class="p">(</span><span class="n">datetime</span><span class="o">.</span><span class="n">timedelta</span><span class="p">(</span><span class="n">seconds</span><span class="o">=</span><span class="nb">int</span><span class="p">(</span><span class="n">eta_seconds</span><span class="p">)))</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;Epoch: [</span><span class="si">{0}</span><span class="s1">/</span><span class="si">{1}</span><span class="s1">][</span><span class="si">{2}</span><span class="s1">/</span><span class="si">{3}</span><span class="s1">]</span><span class="se">\t</span><span class="s1">&#39;</span>
<span class="s1">&#39;Time </span><span class="si">{batch_time.val:.3f}</span><span class="s1"> (</span><span class="si">{batch_time.avg:.3f}</span><span class="s1">)</span><span class="se">\t</span><span class="s1">&#39;</span>
<span class="s1">&#39;Data </span><span class="si">{data_time.val:.3f}</span><span class="s1"> (</span><span class="si">{data_time.avg:.3f}</span><span class="s1">)</span><span class="se">\t</span><span class="s1">&#39;</span>
<span class="s1">&#39;Loss_t </span><span class="si">{loss_t.val:.4f}</span><span class="s1"> (</span><span class="si">{loss_t.avg:.4f}</span><span class="s1">)</span><span class="se">\t</span><span class="s1">&#39;</span>
<span class="s1">&#39;Loss_x </span><span class="si">{loss_x.val:.4f}</span><span class="s1"> (</span><span class="si">{loss_x.avg:.4f}</span><span class="s1">)</span><span class="se">\t</span><span class="s1">&#39;</span>
<span class="s1">&#39;Acc </span><span class="si">{acc.val:.2f}</span><span class="s1"> (</span><span class="si">{acc.avg:.2f}</span><span class="s1">)</span><span class="se">\t</span><span class="s1">&#39;</span>
<span class="s1">&#39;Lr </span><span class="si">{lr:.6f}</span><span class="se">\t</span><span class="s1">&#39;</span>
<span class="s1">&#39;Eta </span><span class="si">{eta}</span><span class="s1">&#39;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span>
<span class="n">epoch</span><span class="o">+</span><span class="mi">1</span><span class="p">,</span> <span class="n">max_epoch</span><span class="p">,</span> <span class="n">batch_idx</span><span class="o">+</span><span class="mi">1</span><span class="p">,</span> <span class="nb">len</span><span class="p">(</span><span class="n">trainloader</span><span class="p">),</span>
<span class="n">batch_time</span><span class="o">=</span><span class="n">batch_time</span><span class="p">,</span>
<span class="n">data_time</span><span class="o">=</span><span class="n">data_time</span><span class="p">,</span>
<span class="n">loss_t</span><span class="o">=</span><span class="n">losses_t</span><span class="p">,</span>
<span class="n">loss_x</span><span class="o">=</span><span class="n">losses_x</span><span class="p">,</span>
<span class="n">acc</span><span class="o">=</span><span class="n">accs</span><span class="p">,</span>
<span class="n">lr</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">optimizer</span><span class="o">.</span><span class="n">param_groups</span><span class="p">[</span><span class="mi">0</span><span class="p">][</span><span class="s1">&#39;lr&#39;</span><span class="p">],</span>
<span class="n">eta</span><span class="o">=</span><span class="n">eta_str</span>
<span class="p">)</span>
<span class="p">)</span>
<span class="n">end</span> <span class="o">=</span> <span class="n">time</span><span class="o">.</span><span class="n">time</span><span class="p">()</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">scheduler</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">scheduler</span><span class="o">.</span><span class="n">step</span><span class="p">()</span></div></div>
</pre></div>
</div>
</div>
<footer>
<hr/>
<div role="contentinfo">
<p>
&copy; Copyright 2019, Kaiyang Zhou
</p>
</div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/rtfd/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
</body>
</html>