deep-person-reid/_modules/torchreid/models/inceptionresnetv2.html

614 lines
77 KiB
HTML

<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>torchreid.models.inceptionresnetv2 &mdash; torchreid 0.7.7 documentation</title>
<script type="text/javascript" src="../../../_static/js/modernizr.min.js"></script>
<script type="text/javascript" id="documentation_options" data-url_root="../../../" src="../../../_static/documentation_options.js"></script>
<script type="text/javascript" src="../../../_static/jquery.js"></script>
<script type="text/javascript" src="../../../_static/underscore.js"></script>
<script type="text/javascript" src="../../../_static/doctools.js"></script>
<script type="text/javascript" src="../../../_static/language_data.js"></script>
<script async="async" type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-AMS-MML_HTMLorMML"></script>
<script type="text/javascript" src="../../../_static/js/theme.js"></script>
<link rel="stylesheet" href="../../../_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="../../../_static/pygments.css" type="text/css" />
<link rel="index" title="Index" href="../../../genindex.html" />
<link rel="search" title="Search" href="../../../search.html" />
</head>
<body class="wy-body-for-nav">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
<div class="wy-side-scroll">
<div class="wy-side-nav-search" >
<a href="../../../index.html" class="icon icon-home"> torchreid
</a>
<div class="version">
0.7.7
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../../../search.html" method="get">
<input type="text" name="q" placeholder="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../../user_guide.html">How-to</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../datasets.html">Datasets</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../evaluation.html">Evaluation</a></li>
</ul>
<p class="caption"><span class="caption-text">Package Reference</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../../pkg/data.html">torchreid.data</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../pkg/engine.html">torchreid.engine</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../pkg/losses.html">torchreid.losses</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../pkg/metrics.html">torchreid.metrics</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../pkg/models.html">torchreid.models</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../pkg/optim.html">torchreid.optim</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../pkg/utils.html">torchreid.utils</a></li>
</ul>
<p class="caption"><span class="caption-text">Resources</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../../AWESOME_REID.html">Awesome-ReID</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../MODEL_ZOO.html">Model Zoo</a></li>
</ul>
</div>
</div>
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
<nav class="wy-nav-top" aria-label="top navigation">
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="../../../index.html">torchreid</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="wy-breadcrumbs">
<li><a href="../../../index.html">Docs</a> &raquo;</li>
<li><a href="../../index.html">Module code</a> &raquo;</li>
<li>torchreid.models.inceptionresnetv2</li>
<li class="wy-breadcrumbs-aside">
</li>
</ul>
<hr/>
</div>
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<h1>Source code for torchreid.models.inceptionresnetv2</h1><div class="highlight"><pre>
<span></span><span class="kn">from</span> <span class="nn">__future__</span> <span class="k">import</span> <span class="n">absolute_import</span>
<span class="kn">from</span> <span class="nn">__future__</span> <span class="k">import</span> <span class="n">division</span>
<span class="n">__all__</span> <span class="o">=</span> <span class="p">[</span><span class="s1">&#39;inceptionresnetv2&#39;</span><span class="p">]</span>
<span class="kn">import</span> <span class="nn">torch</span>
<span class="kn">import</span> <span class="nn">torch.nn</span> <span class="k">as</span> <span class="nn">nn</span>
<span class="kn">from</span> <span class="nn">torch.nn</span> <span class="k">import</span> <span class="n">functional</span> <span class="k">as</span> <span class="n">F</span>
<span class="kn">import</span> <span class="nn">torch.utils.model_zoo</span> <span class="k">as</span> <span class="nn">model_zoo</span>
<span class="kn">import</span> <span class="nn">os</span>
<span class="kn">import</span> <span class="nn">sys</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd">Code imported from https://github.com/Cadene/pretrained-models.pytorch</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="n">pretrained_settings</span> <span class="o">=</span> <span class="p">{</span>
<span class="s1">&#39;inceptionresnetv2&#39;</span><span class="p">:</span> <span class="p">{</span>
<span class="s1">&#39;imagenet&#39;</span><span class="p">:</span> <span class="p">{</span>
<span class="s1">&#39;url&#39;</span><span class="p">:</span> <span class="s1">&#39;http://data.lip6.fr/cadene/pretrainedmodels/inceptionresnetv2-520b38e4.pth&#39;</span><span class="p">,</span>
<span class="s1">&#39;input_space&#39;</span><span class="p">:</span> <span class="s1">&#39;RGB&#39;</span><span class="p">,</span>
<span class="s1">&#39;input_size&#39;</span><span class="p">:</span> <span class="p">[</span><span class="mi">3</span><span class="p">,</span> <span class="mi">299</span><span class="p">,</span> <span class="mi">299</span><span class="p">],</span>
<span class="s1">&#39;input_range&#39;</span><span class="p">:</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span>
<span class="s1">&#39;mean&#39;</span><span class="p">:</span> <span class="p">[</span><span class="mf">0.5</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">],</span>
<span class="s1">&#39;std&#39;</span><span class="p">:</span> <span class="p">[</span><span class="mf">0.5</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">],</span>
<span class="s1">&#39;num_classes&#39;</span><span class="p">:</span> <span class="mi">1000</span>
<span class="p">},</span>
<span class="s1">&#39;imagenet+background&#39;</span><span class="p">:</span> <span class="p">{</span>
<span class="s1">&#39;url&#39;</span><span class="p">:</span> <span class="s1">&#39;http://data.lip6.fr/cadene/pretrainedmodels/inceptionresnetv2-520b38e4.pth&#39;</span><span class="p">,</span>
<span class="s1">&#39;input_space&#39;</span><span class="p">:</span> <span class="s1">&#39;RGB&#39;</span><span class="p">,</span>
<span class="s1">&#39;input_size&#39;</span><span class="p">:</span> <span class="p">[</span><span class="mi">3</span><span class="p">,</span> <span class="mi">299</span><span class="p">,</span> <span class="mi">299</span><span class="p">],</span>
<span class="s1">&#39;input_range&#39;</span><span class="p">:</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span>
<span class="s1">&#39;mean&#39;</span><span class="p">:</span> <span class="p">[</span><span class="mf">0.5</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">],</span>
<span class="s1">&#39;std&#39;</span><span class="p">:</span> <span class="p">[</span><span class="mf">0.5</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">],</span>
<span class="s1">&#39;num_classes&#39;</span><span class="p">:</span> <span class="mi">1001</span>
<span class="p">}</span>
<span class="p">}</span>
<span class="p">}</span>
<span class="k">class</span> <span class="nc">BasicConv2d</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span>
<span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">in_planes</span><span class="p">,</span> <span class="n">out_planes</span><span class="p">,</span> <span class="n">kernel_size</span><span class="p">,</span> <span class="n">stride</span><span class="p">,</span> <span class="n">padding</span><span class="o">=</span><span class="mi">0</span><span class="p">):</span>
<span class="nb">super</span><span class="p">(</span><span class="n">BasicConv2d</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">conv</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="n">in_planes</span><span class="p">,</span> <span class="n">out_planes</span><span class="p">,</span>
<span class="n">kernel_size</span><span class="o">=</span><span class="n">kernel_size</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="n">stride</span><span class="p">,</span>
<span class="n">padding</span><span class="o">=</span><span class="n">padding</span><span class="p">,</span> <span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span> <span class="c1"># verify bias false</span>
<span class="bp">self</span><span class="o">.</span><span class="n">bn</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">BatchNorm2d</span><span class="p">(</span><span class="n">out_planes</span><span class="p">,</span>
<span class="n">eps</span><span class="o">=</span><span class="mf">0.001</span><span class="p">,</span> <span class="c1"># value found in tensorflow</span>
<span class="n">momentum</span><span class="o">=</span><span class="mf">0.1</span><span class="p">,</span> <span class="c1"># default pytorch value</span>
<span class="n">affine</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">relu</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">ReLU</span><span class="p">(</span><span class="n">inplace</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
<span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">conv</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">bn</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">relu</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="k">return</span> <span class="n">x</span>
<span class="k">class</span> <span class="nc">Mixed_5b</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span>
<span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="nb">super</span><span class="p">(</span><span class="n">Mixed_5b</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">branch0</span> <span class="o">=</span> <span class="n">BasicConv2d</span><span class="p">(</span><span class="mi">192</span><span class="p">,</span> <span class="mi">96</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">branch1</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Sequential</span><span class="p">(</span>
<span class="n">BasicConv2d</span><span class="p">(</span><span class="mi">192</span><span class="p">,</span> <span class="mi">48</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">1</span><span class="p">),</span>
<span class="n">BasicConv2d</span><span class="p">(</span><span class="mi">48</span><span class="p">,</span> <span class="mi">64</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">5</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">padding</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
<span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">branch2</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Sequential</span><span class="p">(</span>
<span class="n">BasicConv2d</span><span class="p">(</span><span class="mi">192</span><span class="p">,</span> <span class="mi">64</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">1</span><span class="p">),</span>
<span class="n">BasicConv2d</span><span class="p">(</span><span class="mi">64</span><span class="p">,</span> <span class="mi">96</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">padding</span><span class="o">=</span><span class="mi">1</span><span class="p">),</span>
<span class="n">BasicConv2d</span><span class="p">(</span><span class="mi">96</span><span class="p">,</span> <span class="mi">96</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">padding</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">branch3</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Sequential</span><span class="p">(</span>
<span class="n">nn</span><span class="o">.</span><span class="n">AvgPool2d</span><span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">padding</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">count_include_pad</span><span class="o">=</span><span class="kc">False</span><span class="p">),</span>
<span class="n">BasicConv2d</span><span class="p">(</span><span class="mi">192</span><span class="p">,</span> <span class="mi">64</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="p">)</span>
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
<span class="n">x0</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">branch0</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">x1</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">branch1</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">x2</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">branch2</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">x3</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">branch3</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">out</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">cat</span><span class="p">((</span><span class="n">x0</span><span class="p">,</span> <span class="n">x1</span><span class="p">,</span> <span class="n">x2</span><span class="p">,</span> <span class="n">x3</span><span class="p">),</span> <span class="mi">1</span><span class="p">)</span>
<span class="k">return</span> <span class="n">out</span>
<span class="k">class</span> <span class="nc">Block35</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span>
<span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">scale</span><span class="o">=</span><span class="mf">1.0</span><span class="p">):</span>
<span class="nb">super</span><span class="p">(</span><span class="n">Block35</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">scale</span> <span class="o">=</span> <span class="n">scale</span>
<span class="bp">self</span><span class="o">.</span><span class="n">branch0</span> <span class="o">=</span> <span class="n">BasicConv2d</span><span class="p">(</span><span class="mi">320</span><span class="p">,</span> <span class="mi">32</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">branch1</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Sequential</span><span class="p">(</span>
<span class="n">BasicConv2d</span><span class="p">(</span><span class="mi">320</span><span class="p">,</span> <span class="mi">32</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">1</span><span class="p">),</span>
<span class="n">BasicConv2d</span><span class="p">(</span><span class="mi">32</span><span class="p">,</span> <span class="mi">32</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">padding</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">branch2</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Sequential</span><span class="p">(</span>
<span class="n">BasicConv2d</span><span class="p">(</span><span class="mi">320</span><span class="p">,</span> <span class="mi">32</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">1</span><span class="p">),</span>
<span class="n">BasicConv2d</span><span class="p">(</span><span class="mi">32</span><span class="p">,</span> <span class="mi">48</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">padding</span><span class="o">=</span><span class="mi">1</span><span class="p">),</span>
<span class="n">BasicConv2d</span><span class="p">(</span><span class="mi">48</span><span class="p">,</span> <span class="mi">64</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">padding</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">conv2d</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="mi">128</span><span class="p">,</span> <span class="mi">320</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">relu</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">ReLU</span><span class="p">(</span><span class="n">inplace</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
<span class="n">x0</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">branch0</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">x1</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">branch1</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">x2</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">branch2</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">out</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">cat</span><span class="p">((</span><span class="n">x0</span><span class="p">,</span> <span class="n">x1</span><span class="p">,</span> <span class="n">x2</span><span class="p">),</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">out</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">conv2d</span><span class="p">(</span><span class="n">out</span><span class="p">)</span>
<span class="n">out</span> <span class="o">=</span> <span class="n">out</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">scale</span> <span class="o">+</span> <span class="n">x</span>
<span class="n">out</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">relu</span><span class="p">(</span><span class="n">out</span><span class="p">)</span>
<span class="k">return</span> <span class="n">out</span>
<span class="k">class</span> <span class="nc">Mixed_6a</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span>
<span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="nb">super</span><span class="p">(</span><span class="n">Mixed_6a</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">branch0</span> <span class="o">=</span> <span class="n">BasicConv2d</span><span class="p">(</span><span class="mi">320</span><span class="p">,</span> <span class="mi">384</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">branch1</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Sequential</span><span class="p">(</span>
<span class="n">BasicConv2d</span><span class="p">(</span><span class="mi">320</span><span class="p">,</span> <span class="mi">256</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">1</span><span class="p">),</span>
<span class="n">BasicConv2d</span><span class="p">(</span><span class="mi">256</span><span class="p">,</span> <span class="mi">256</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">padding</span><span class="o">=</span><span class="mi">1</span><span class="p">),</span>
<span class="n">BasicConv2d</span><span class="p">(</span><span class="mi">256</span><span class="p">,</span> <span class="mi">384</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
<span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">branch2</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">MaxPool2d</span><span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
<span class="n">x0</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">branch0</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">x1</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">branch1</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">x2</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">branch2</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">out</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">cat</span><span class="p">((</span><span class="n">x0</span><span class="p">,</span> <span class="n">x1</span><span class="p">,</span> <span class="n">x2</span><span class="p">),</span> <span class="mi">1</span><span class="p">)</span>
<span class="k">return</span> <span class="n">out</span>
<span class="k">class</span> <span class="nc">Block17</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span>
<span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">scale</span><span class="o">=</span><span class="mf">1.0</span><span class="p">):</span>
<span class="nb">super</span><span class="p">(</span><span class="n">Block17</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">scale</span> <span class="o">=</span> <span class="n">scale</span>
<span class="bp">self</span><span class="o">.</span><span class="n">branch0</span> <span class="o">=</span> <span class="n">BasicConv2d</span><span class="p">(</span><span class="mi">1088</span><span class="p">,</span> <span class="mi">192</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">branch1</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Sequential</span><span class="p">(</span>
<span class="n">BasicConv2d</span><span class="p">(</span><span class="mi">1088</span><span class="p">,</span> <span class="mi">128</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">1</span><span class="p">),</span>
<span class="n">BasicConv2d</span><span class="p">(</span><span class="mi">128</span><span class="p">,</span> <span class="mi">160</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span><span class="mi">7</span><span class="p">),</span> <span class="n">stride</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">padding</span><span class="o">=</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="mi">3</span><span class="p">)),</span>
<span class="n">BasicConv2d</span><span class="p">(</span><span class="mi">160</span><span class="p">,</span> <span class="mi">192</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="p">(</span><span class="mi">7</span><span class="p">,</span><span class="mi">1</span><span class="p">),</span> <span class="n">stride</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">padding</span><span class="o">=</span><span class="p">(</span><span class="mi">3</span><span class="p">,</span><span class="mi">0</span><span class="p">))</span>
<span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">conv2d</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="mi">384</span><span class="p">,</span> <span class="mi">1088</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">relu</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">ReLU</span><span class="p">(</span><span class="n">inplace</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
<span class="n">x0</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">branch0</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">x1</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">branch1</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">out</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">cat</span><span class="p">((</span><span class="n">x0</span><span class="p">,</span> <span class="n">x1</span><span class="p">),</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">out</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">conv2d</span><span class="p">(</span><span class="n">out</span><span class="p">)</span>
<span class="n">out</span> <span class="o">=</span> <span class="n">out</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">scale</span> <span class="o">+</span> <span class="n">x</span>
<span class="n">out</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">relu</span><span class="p">(</span><span class="n">out</span><span class="p">)</span>
<span class="k">return</span> <span class="n">out</span>
<span class="k">class</span> <span class="nc">Mixed_7a</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span>
<span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="nb">super</span><span class="p">(</span><span class="n">Mixed_7a</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">branch0</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Sequential</span><span class="p">(</span>
<span class="n">BasicConv2d</span><span class="p">(</span><span class="mi">1088</span><span class="p">,</span> <span class="mi">256</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">1</span><span class="p">),</span>
<span class="n">BasicConv2d</span><span class="p">(</span><span class="mi">256</span><span class="p">,</span> <span class="mi">384</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
<span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">branch1</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Sequential</span><span class="p">(</span>
<span class="n">BasicConv2d</span><span class="p">(</span><span class="mi">1088</span><span class="p">,</span> <span class="mi">256</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">1</span><span class="p">),</span>
<span class="n">BasicConv2d</span><span class="p">(</span><span class="mi">256</span><span class="p">,</span> <span class="mi">288</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
<span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">branch2</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Sequential</span><span class="p">(</span>
<span class="n">BasicConv2d</span><span class="p">(</span><span class="mi">1088</span><span class="p">,</span> <span class="mi">256</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">1</span><span class="p">),</span>
<span class="n">BasicConv2d</span><span class="p">(</span><span class="mi">256</span><span class="p">,</span> <span class="mi">288</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">padding</span><span class="o">=</span><span class="mi">1</span><span class="p">),</span>
<span class="n">BasicConv2d</span><span class="p">(</span><span class="mi">288</span><span class="p">,</span> <span class="mi">320</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
<span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">branch3</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">MaxPool2d</span><span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
<span class="n">x0</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">branch0</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">x1</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">branch1</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">x2</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">branch2</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">x3</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">branch3</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">out</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">cat</span><span class="p">((</span><span class="n">x0</span><span class="p">,</span> <span class="n">x1</span><span class="p">,</span> <span class="n">x2</span><span class="p">,</span> <span class="n">x3</span><span class="p">),</span> <span class="mi">1</span><span class="p">)</span>
<span class="k">return</span> <span class="n">out</span>
<span class="k">class</span> <span class="nc">Block8</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span>
<span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">scale</span><span class="o">=</span><span class="mf">1.0</span><span class="p">,</span> <span class="n">noReLU</span><span class="o">=</span><span class="kc">False</span><span class="p">):</span>
<span class="nb">super</span><span class="p">(</span><span class="n">Block8</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">scale</span> <span class="o">=</span> <span class="n">scale</span>
<span class="bp">self</span><span class="o">.</span><span class="n">noReLU</span> <span class="o">=</span> <span class="n">noReLU</span>
<span class="bp">self</span><span class="o">.</span><span class="n">branch0</span> <span class="o">=</span> <span class="n">BasicConv2d</span><span class="p">(</span><span class="mi">2080</span><span class="p">,</span> <span class="mi">192</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">branch1</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Sequential</span><span class="p">(</span>
<span class="n">BasicConv2d</span><span class="p">(</span><span class="mi">2080</span><span class="p">,</span> <span class="mi">192</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">1</span><span class="p">),</span>
<span class="n">BasicConv2d</span><span class="p">(</span><span class="mi">192</span><span class="p">,</span> <span class="mi">224</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span><span class="mi">3</span><span class="p">),</span> <span class="n">stride</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">padding</span><span class="o">=</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="mi">1</span><span class="p">)),</span>
<span class="n">BasicConv2d</span><span class="p">(</span><span class="mi">224</span><span class="p">,</span> <span class="mi">256</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="p">(</span><span class="mi">3</span><span class="p">,</span><span class="mi">1</span><span class="p">),</span> <span class="n">stride</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">padding</span><span class="o">=</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span><span class="mi">0</span><span class="p">))</span>
<span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">conv2d</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="mi">448</span><span class="p">,</span> <span class="mi">2080</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="k">if</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">noReLU</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">relu</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">ReLU</span><span class="p">(</span><span class="n">inplace</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
<span class="n">x0</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">branch0</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">x1</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">branch1</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">out</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">cat</span><span class="p">((</span><span class="n">x0</span><span class="p">,</span> <span class="n">x1</span><span class="p">),</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">out</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">conv2d</span><span class="p">(</span><span class="n">out</span><span class="p">)</span>
<span class="n">out</span> <span class="o">=</span> <span class="n">out</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">scale</span> <span class="o">+</span> <span class="n">x</span>
<span class="k">if</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">noReLU</span><span class="p">:</span>
<span class="n">out</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">relu</span><span class="p">(</span><span class="n">out</span><span class="p">)</span>
<span class="k">return</span> <span class="n">out</span>
<span class="k">def</span> <span class="nf">inceptionresnetv2</span><span class="p">(</span><span class="n">num_classes</span><span class="o">=</span><span class="mi">1000</span><span class="p">,</span> <span class="n">pretrained</span><span class="o">=</span><span class="s1">&#39;imagenet&#39;</span><span class="p">):</span>
<span class="sa">r</span><span class="sd">&quot;&quot;&quot;InceptionResNetV2 model architecture from the</span>
<span class="sd"> `&quot;InceptionV4, Inception-ResNet...&quot; &lt;https://arxiv.org/abs/1602.07261&gt;`_ paper.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">if</span> <span class="n">pretrained</span><span class="p">:</span>
<span class="n">settings</span> <span class="o">=</span> <span class="n">pretrained_settings</span><span class="p">[</span><span class="s1">&#39;inceptionresnetv2&#39;</span><span class="p">][</span><span class="n">pretrained</span><span class="p">]</span>
<span class="k">assert</span> <span class="n">num_classes</span> <span class="o">==</span> <span class="n">settings</span><span class="p">[</span><span class="s1">&#39;num_classes&#39;</span><span class="p">],</span> \
<span class="s1">&#39;num_classes should be </span><span class="si">{}</span><span class="s1">, but is </span><span class="si">{}</span><span class="s1">&#39;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">settings</span><span class="p">[</span><span class="s1">&#39;num_classes&#39;</span><span class="p">],</span> <span class="n">num_classes</span><span class="p">)</span>
<span class="c1"># both &#39;imagenet&#39;&amp;&#39;imagenet+background&#39; are loaded from same parameters</span>
<span class="n">model</span> <span class="o">=</span> <span class="n">InceptionResNetV2</span><span class="p">(</span><span class="n">num_classes</span><span class="o">=</span><span class="mi">1001</span><span class="p">)</span>
<span class="n">model</span><span class="o">.</span><span class="n">load_state_dict</span><span class="p">(</span><span class="n">model_zoo</span><span class="o">.</span><span class="n">load_url</span><span class="p">(</span><span class="n">settings</span><span class="p">[</span><span class="s1">&#39;url&#39;</span><span class="p">]))</span>
<span class="k">if</span> <span class="n">pretrained</span> <span class="o">==</span> <span class="s1">&#39;imagenet&#39;</span><span class="p">:</span>
<span class="n">new_last_linear</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="mi">1536</span><span class="p">,</span> <span class="mi">1000</span><span class="p">)</span>
<span class="n">new_last_linear</span><span class="o">.</span><span class="n">weight</span><span class="o">.</span><span class="n">data</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">last_linear</span><span class="o">.</span><span class="n">weight</span><span class="o">.</span><span class="n">data</span><span class="p">[</span><span class="mi">1</span><span class="p">:]</span>
<span class="n">new_last_linear</span><span class="o">.</span><span class="n">bias</span><span class="o">.</span><span class="n">data</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">last_linear</span><span class="o">.</span><span class="n">bias</span><span class="o">.</span><span class="n">data</span><span class="p">[</span><span class="mi">1</span><span class="p">:]</span>
<span class="n">model</span><span class="o">.</span><span class="n">last_linear</span> <span class="o">=</span> <span class="n">new_last_linear</span>
<span class="n">model</span><span class="o">.</span><span class="n">input_space</span> <span class="o">=</span> <span class="n">settings</span><span class="p">[</span><span class="s1">&#39;input_space&#39;</span><span class="p">]</span>
<span class="n">model</span><span class="o">.</span><span class="n">input_size</span> <span class="o">=</span> <span class="n">settings</span><span class="p">[</span><span class="s1">&#39;input_size&#39;</span><span class="p">]</span>
<span class="n">model</span><span class="o">.</span><span class="n">input_range</span> <span class="o">=</span> <span class="n">settings</span><span class="p">[</span><span class="s1">&#39;input_range&#39;</span><span class="p">]</span>
<span class="n">model</span><span class="o">.</span><span class="n">mean</span> <span class="o">=</span> <span class="n">settings</span><span class="p">[</span><span class="s1">&#39;mean&#39;</span><span class="p">]</span>
<span class="n">model</span><span class="o">.</span><span class="n">std</span> <span class="o">=</span> <span class="n">settings</span><span class="p">[</span><span class="s1">&#39;std&#39;</span><span class="p">]</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">model</span> <span class="o">=</span> <span class="n">InceptionResNetV2</span><span class="p">(</span><span class="n">num_classes</span><span class="o">=</span><span class="n">num_classes</span><span class="p">)</span>
<span class="k">return</span> <span class="n">model</span>
<span class="c1">##################### Model Definition #########################</span>
<div class="viewcode-block" id="InceptionResNetV2"><a class="viewcode-back" href="../../../pkg/models.html#torchreid.models.inceptionresnetv2.InceptionResNetV2">[docs]</a><span class="k">class</span> <span class="nc">InceptionResNetV2</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;Inception-ResNet-V2.</span>
<span class="sd"> Reference:</span>
<span class="sd"> Szegedy et al. Inception-v4, Inception-ResNet and the Impact of Residual</span>
<span class="sd"> Connections on Learning. AAAI 2017.</span>
<span class="sd"> Public keys:</span>
<span class="sd"> - ``inceptionresnetv2``: Inception-ResNet-V2.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">num_classes</span><span class="p">,</span> <span class="n">loss</span><span class="o">=</span><span class="s1">&#39;softmax&#39;</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="nb">super</span><span class="p">(</span><span class="n">InceptionResNetV2</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">loss</span> <span class="o">=</span> <span class="n">loss</span>
<span class="c1"># Modules</span>
<span class="bp">self</span><span class="o">.</span><span class="n">conv2d_1a</span> <span class="o">=</span> <span class="n">BasicConv2d</span><span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="mi">32</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">conv2d_2a</span> <span class="o">=</span> <span class="n">BasicConv2d</span><span class="p">(</span><span class="mi">32</span><span class="p">,</span> <span class="mi">32</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">conv2d_2b</span> <span class="o">=</span> <span class="n">BasicConv2d</span><span class="p">(</span><span class="mi">32</span><span class="p">,</span> <span class="mi">64</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">padding</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">maxpool_3a</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">MaxPool2d</span><span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">conv2d_3b</span> <span class="o">=</span> <span class="n">BasicConv2d</span><span class="p">(</span><span class="mi">64</span><span class="p">,</span> <span class="mi">80</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">conv2d_4a</span> <span class="o">=</span> <span class="n">BasicConv2d</span><span class="p">(</span><span class="mi">80</span><span class="p">,</span> <span class="mi">192</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">maxpool_5a</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">MaxPool2d</span><span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">mixed_5b</span> <span class="o">=</span> <span class="n">Mixed_5b</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">repeat</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Sequential</span><span class="p">(</span>
<span class="n">Block35</span><span class="p">(</span><span class="n">scale</span><span class="o">=</span><span class="mf">0.17</span><span class="p">),</span>
<span class="n">Block35</span><span class="p">(</span><span class="n">scale</span><span class="o">=</span><span class="mf">0.17</span><span class="p">),</span>
<span class="n">Block35</span><span class="p">(</span><span class="n">scale</span><span class="o">=</span><span class="mf">0.17</span><span class="p">),</span>
<span class="n">Block35</span><span class="p">(</span><span class="n">scale</span><span class="o">=</span><span class="mf">0.17</span><span class="p">),</span>
<span class="n">Block35</span><span class="p">(</span><span class="n">scale</span><span class="o">=</span><span class="mf">0.17</span><span class="p">),</span>
<span class="n">Block35</span><span class="p">(</span><span class="n">scale</span><span class="o">=</span><span class="mf">0.17</span><span class="p">),</span>
<span class="n">Block35</span><span class="p">(</span><span class="n">scale</span><span class="o">=</span><span class="mf">0.17</span><span class="p">),</span>
<span class="n">Block35</span><span class="p">(</span><span class="n">scale</span><span class="o">=</span><span class="mf">0.17</span><span class="p">),</span>
<span class="n">Block35</span><span class="p">(</span><span class="n">scale</span><span class="o">=</span><span class="mf">0.17</span><span class="p">),</span>
<span class="n">Block35</span><span class="p">(</span><span class="n">scale</span><span class="o">=</span><span class="mf">0.17</span><span class="p">)</span>
<span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">mixed_6a</span> <span class="o">=</span> <span class="n">Mixed_6a</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">repeat_1</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Sequential</span><span class="p">(</span>
<span class="n">Block17</span><span class="p">(</span><span class="n">scale</span><span class="o">=</span><span class="mf">0.10</span><span class="p">),</span>
<span class="n">Block17</span><span class="p">(</span><span class="n">scale</span><span class="o">=</span><span class="mf">0.10</span><span class="p">),</span>
<span class="n">Block17</span><span class="p">(</span><span class="n">scale</span><span class="o">=</span><span class="mf">0.10</span><span class="p">),</span>
<span class="n">Block17</span><span class="p">(</span><span class="n">scale</span><span class="o">=</span><span class="mf">0.10</span><span class="p">),</span>
<span class="n">Block17</span><span class="p">(</span><span class="n">scale</span><span class="o">=</span><span class="mf">0.10</span><span class="p">),</span>
<span class="n">Block17</span><span class="p">(</span><span class="n">scale</span><span class="o">=</span><span class="mf">0.10</span><span class="p">),</span>
<span class="n">Block17</span><span class="p">(</span><span class="n">scale</span><span class="o">=</span><span class="mf">0.10</span><span class="p">),</span>
<span class="n">Block17</span><span class="p">(</span><span class="n">scale</span><span class="o">=</span><span class="mf">0.10</span><span class="p">),</span>
<span class="n">Block17</span><span class="p">(</span><span class="n">scale</span><span class="o">=</span><span class="mf">0.10</span><span class="p">),</span>
<span class="n">Block17</span><span class="p">(</span><span class="n">scale</span><span class="o">=</span><span class="mf">0.10</span><span class="p">),</span>
<span class="n">Block17</span><span class="p">(</span><span class="n">scale</span><span class="o">=</span><span class="mf">0.10</span><span class="p">),</span>
<span class="n">Block17</span><span class="p">(</span><span class="n">scale</span><span class="o">=</span><span class="mf">0.10</span><span class="p">),</span>
<span class="n">Block17</span><span class="p">(</span><span class="n">scale</span><span class="o">=</span><span class="mf">0.10</span><span class="p">),</span>
<span class="n">Block17</span><span class="p">(</span><span class="n">scale</span><span class="o">=</span><span class="mf">0.10</span><span class="p">),</span>
<span class="n">Block17</span><span class="p">(</span><span class="n">scale</span><span class="o">=</span><span class="mf">0.10</span><span class="p">),</span>
<span class="n">Block17</span><span class="p">(</span><span class="n">scale</span><span class="o">=</span><span class="mf">0.10</span><span class="p">),</span>
<span class="n">Block17</span><span class="p">(</span><span class="n">scale</span><span class="o">=</span><span class="mf">0.10</span><span class="p">),</span>
<span class="n">Block17</span><span class="p">(</span><span class="n">scale</span><span class="o">=</span><span class="mf">0.10</span><span class="p">),</span>
<span class="n">Block17</span><span class="p">(</span><span class="n">scale</span><span class="o">=</span><span class="mf">0.10</span><span class="p">),</span>
<span class="n">Block17</span><span class="p">(</span><span class="n">scale</span><span class="o">=</span><span class="mf">0.10</span><span class="p">)</span>
<span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">mixed_7a</span> <span class="o">=</span> <span class="n">Mixed_7a</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">repeat_2</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Sequential</span><span class="p">(</span>
<span class="n">Block8</span><span class="p">(</span><span class="n">scale</span><span class="o">=</span><span class="mf">0.20</span><span class="p">),</span>
<span class="n">Block8</span><span class="p">(</span><span class="n">scale</span><span class="o">=</span><span class="mf">0.20</span><span class="p">),</span>
<span class="n">Block8</span><span class="p">(</span><span class="n">scale</span><span class="o">=</span><span class="mf">0.20</span><span class="p">),</span>
<span class="n">Block8</span><span class="p">(</span><span class="n">scale</span><span class="o">=</span><span class="mf">0.20</span><span class="p">),</span>
<span class="n">Block8</span><span class="p">(</span><span class="n">scale</span><span class="o">=</span><span class="mf">0.20</span><span class="p">),</span>
<span class="n">Block8</span><span class="p">(</span><span class="n">scale</span><span class="o">=</span><span class="mf">0.20</span><span class="p">),</span>
<span class="n">Block8</span><span class="p">(</span><span class="n">scale</span><span class="o">=</span><span class="mf">0.20</span><span class="p">),</span>
<span class="n">Block8</span><span class="p">(</span><span class="n">scale</span><span class="o">=</span><span class="mf">0.20</span><span class="p">),</span>
<span class="n">Block8</span><span class="p">(</span><span class="n">scale</span><span class="o">=</span><span class="mf">0.20</span><span class="p">)</span>
<span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">block8</span> <span class="o">=</span> <span class="n">Block8</span><span class="p">(</span><span class="n">noReLU</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">conv2d_7b</span> <span class="o">=</span> <span class="n">BasicConv2d</span><span class="p">(</span><span class="mi">2080</span><span class="p">,</span> <span class="mi">1536</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">global_avgpool</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">AdaptiveAvgPool2d</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">classifier</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="mi">1536</span><span class="p">,</span> <span class="n">num_classes</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">load_imagenet_weights</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="n">settings</span> <span class="o">=</span> <span class="n">pretrained_settings</span><span class="p">[</span><span class="s1">&#39;inceptionresnetv2&#39;</span><span class="p">][</span><span class="s1">&#39;imagenet&#39;</span><span class="p">]</span>
<span class="n">pretrain_dict</span> <span class="o">=</span> <span class="n">model_zoo</span><span class="o">.</span><span class="n">load_url</span><span class="p">(</span><span class="n">settings</span><span class="p">[</span><span class="s1">&#39;url&#39;</span><span class="p">])</span>
<span class="n">model_dict</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">state_dict</span><span class="p">()</span>
<span class="n">pretrain_dict</span> <span class="o">=</span> <span class="p">{</span><span class="n">k</span><span class="p">:</span> <span class="n">v</span> <span class="k">for</span> <span class="n">k</span><span class="p">,</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">pretrain_dict</span><span class="o">.</span><span class="n">items</span><span class="p">()</span> <span class="k">if</span> <span class="n">k</span> <span class="ow">in</span> <span class="n">model_dict</span> <span class="ow">and</span> <span class="n">model_dict</span><span class="p">[</span><span class="n">k</span><span class="p">]</span><span class="o">.</span><span class="n">size</span><span class="p">()</span> <span class="o">==</span> <span class="n">v</span><span class="o">.</span><span class="n">size</span><span class="p">()}</span>
<span class="n">model_dict</span><span class="o">.</span><span class="n">update</span><span class="p">(</span><span class="n">pretrain_dict</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">load_state_dict</span><span class="p">(</span><span class="n">model_dict</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">featuremaps</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
<span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">conv2d_1a</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">conv2d_2a</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">conv2d_2b</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">maxpool_3a</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">conv2d_3b</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">conv2d_4a</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">maxpool_5a</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">mixed_5b</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">repeat</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">mixed_6a</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">repeat_1</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">mixed_7a</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">repeat_2</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">block8</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">conv2d_7b</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="k">return</span> <span class="n">x</span>
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
<span class="n">f</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">featuremaps</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">v</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">global_avgpool</span><span class="p">(</span><span class="n">f</span><span class="p">)</span>
<span class="n">v</span> <span class="o">=</span> <span class="n">v</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">v</span><span class="o">.</span><span class="n">size</span><span class="p">(</span><span class="mi">0</span><span class="p">),</span> <span class="o">-</span><span class="mi">1</span><span class="p">)</span>
<span class="k">if</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">training</span><span class="p">:</span>
<span class="k">return</span> <span class="n">v</span>
<span class="n">y</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">classifier</span><span class="p">(</span><span class="n">v</span><span class="p">)</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">loss</span> <span class="o">==</span> <span class="s1">&#39;softmax&#39;</span><span class="p">:</span>
<span class="k">return</span> <span class="n">y</span>
<span class="k">elif</span> <span class="bp">self</span><span class="o">.</span><span class="n">loss</span> <span class="o">==</span> <span class="s1">&#39;triplet&#39;</span><span class="p">:</span>
<span class="k">return</span> <span class="n">y</span><span class="p">,</span> <span class="n">v</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">KeyError</span><span class="p">(</span><span class="s1">&#39;Unsupported loss: </span><span class="si">{}</span><span class="s1">&#39;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">loss</span><span class="p">))</span></div>
<span class="k">def</span> <span class="nf">inceptionresnetv2</span><span class="p">(</span><span class="n">num_classes</span><span class="p">,</span> <span class="n">loss</span><span class="o">=</span><span class="s1">&#39;softmax&#39;</span><span class="p">,</span> <span class="n">pretrained</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="n">model</span> <span class="o">=</span> <span class="n">InceptionResNetV2</span><span class="p">(</span>
<span class="n">num_classes</span><span class="o">=</span><span class="n">num_classes</span><span class="p">,</span>
<span class="n">loss</span><span class="o">=</span><span class="n">loss</span><span class="p">,</span>
<span class="o">**</span><span class="n">kwargs</span>
<span class="p">)</span>
<span class="k">if</span> <span class="n">pretrained</span><span class="p">:</span>
<span class="n">model</span><span class="o">.</span><span class="n">load_imagenet_weights</span><span class="p">()</span>
<span class="k">return</span> <span class="n">model</span>
</pre></div>
</div>
</div>
<footer>
<hr/>
<div role="contentinfo">
<p>
&copy; Copyright 2019, Kaiyang Zhou
</p>
</div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/rtfd/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
</body>
</html>