deep-person-reid/pkg/models.html

569 lines
30 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>torchreid.models &mdash; torchreid 0.7.7 documentation</title>
<script type="text/javascript" src="../_static/js/modernizr.min.js"></script>
<script type="text/javascript" id="documentation_options" data-url_root="../" src="../_static/documentation_options.js"></script>
<script type="text/javascript" src="../_static/jquery.js"></script>
<script type="text/javascript" src="../_static/underscore.js"></script>
<script type="text/javascript" src="../_static/doctools.js"></script>
<script type="text/javascript" src="../_static/language_data.js"></script>
<script async="async" type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-AMS-MML_HTMLorMML"></script>
<script type="text/javascript" src="../_static/js/theme.js"></script>
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="../_static/pygments.css" type="text/css" />
<link rel="index" title="Index" href="../genindex.html" />
<link rel="search" title="Search" href="../search.html" />
<link rel="next" title="torchreid.optim" href="optim.html" />
<link rel="prev" title="torchreid.metrics" href="metrics.html" />
</head>
<body class="wy-body-for-nav">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
<div class="wy-side-scroll">
<div class="wy-side-nav-search" >
<a href="../index.html" class="icon icon-home"> torchreid
</a>
<div class="version">
0.7.7
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../search.html" method="get">
<input type="text" name="q" placeholder="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<ul>
<li class="toctree-l1"><a class="reference internal" href="../user_guide.html">How-to</a></li>
<li class="toctree-l1"><a class="reference internal" href="../datasets.html">Datasets</a></li>
<li class="toctree-l1"><a class="reference internal" href="../evaluation.html">Evaluation</a></li>
</ul>
<p class="caption"><span class="caption-text">Package Reference</span></p>
<ul class="current">
<li class="toctree-l1"><a class="reference internal" href="data.html">torchreid.data</a></li>
<li class="toctree-l1"><a class="reference internal" href="engine.html">torchreid.engine</a></li>
<li class="toctree-l1"><a class="reference internal" href="losses.html">torchreid.losses</a></li>
<li class="toctree-l1"><a class="reference internal" href="metrics.html">torchreid.metrics</a></li>
<li class="toctree-l1 current"><a class="current reference internal" href="#">torchreid.models</a><ul>
<li class="toctree-l2"><a class="reference internal" href="#module-torchreid.models.__init__">Interface</a></li>
<li class="toctree-l2"><a class="reference internal" href="#imagenet-classification-models">ImageNet Classification Models</a></li>
<li class="toctree-l2"><a class="reference internal" href="#lightweight-models">Lightweight Models</a></li>
<li class="toctree-l2"><a class="reference internal" href="#reid-specific-models">ReID-specific Models</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="optim.html">torchreid.optim</a></li>
<li class="toctree-l1"><a class="reference internal" href="utils.html">torchreid.utils</a></li>
</ul>
<p class="caption"><span class="caption-text">Resources</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../AWESOME_REID.html">Awesome-ReID</a></li>
<li class="toctree-l1"><a class="reference internal" href="../MODEL_ZOO.html">Model Zoo</a></li>
</ul>
</div>
</div>
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
<nav class="wy-nav-top" aria-label="top navigation">
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="../index.html">torchreid</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="wy-breadcrumbs">
<li><a href="../index.html">Docs</a> &raquo;</li>
<li>torchreid.models</li>
<li class="wy-breadcrumbs-aside">
<a href="../_sources/pkg/models.rst.txt" rel="nofollow"> View page source</a>
</li>
</ul>
<hr/>
</div>
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<div class="section" id="torchreid-models">
<span id="id1"></span><h1>torchreid.models<a class="headerlink" href="#torchreid-models" title="Permalink to this headline"></a></h1>
<div class="section" id="module-torchreid.models.__init__">
<span id="interface"></span><h2>Interface<a class="headerlink" href="#module-torchreid.models.__init__" title="Permalink to this headline"></a></h2>
<dl class="function">
<dt id="torchreid.models.__init__.build_model">
<code class="descclassname">torchreid.models.__init__.</code><code class="descname">build_model</code><span class="sig-paren">(</span><em>name</em>, <em>num_classes</em>, <em>loss='softmax'</em>, <em>pretrained=True</em>, <em>use_gpu=True</em><span class="sig-paren">)</span><a class="reference internal" href="../_modules/torchreid/models/__init__.html#build_model"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#torchreid.models.__init__.build_model" title="Permalink to this definition"></a></dt>
<dd><p>A function wrapper for building a model.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>name</strong> (<em>str</em>) model name.</li>
<li><strong>num_classes</strong> (<em>int</em>) number of training identities.</li>
<li><strong>loss</strong> (<em>str</em><em>, </em><em>optional</em>) loss function to optimize the model. Currently
supports “softmax” and “triplet”. Default is “softmax”.</li>
<li><strong>pretrained</strong> (<em>bool</em><em>, </em><em>optional</em>) whether to load ImageNet-pretrained weights.
Default is True.</li>
<li><strong>use_gpu</strong> (<em>bool</em><em>, </em><em>optional</em>) whether to use gpu. Default is True.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">nn.Module</p>
</td>
</tr>
</tbody>
</table>
<dl class="docutils">
<dt>Examples::</dt>
<dd><div class="first last highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="kn">from</span> <span class="nn">torchreid</span> <span class="k">import</span> <span class="n">models</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">model</span> <span class="o">=</span> <span class="n">models</span><span class="o">.</span><span class="n">build_model</span><span class="p">(</span><span class="s1">&#39;resnet50&#39;</span><span class="p">,</span> <span class="mi">751</span><span class="p">,</span> <span class="n">loss</span><span class="o">=</span><span class="s1">&#39;softmax&#39;</span><span class="p">)</span>
</pre></div>
</div>
</dd>
</dl>
</dd></dl>
<dl class="function">
<dt id="torchreid.models.__init__.show_avai_models">
<code class="descclassname">torchreid.models.__init__.</code><code class="descname">show_avai_models</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="../_modules/torchreid/models/__init__.html#show_avai_models"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#torchreid.models.__init__.show_avai_models" title="Permalink to this definition"></a></dt>
<dd><p>Displays available models.</p>
<dl class="docutils">
<dt>Examples::</dt>
<dd><div class="first last highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="kn">from</span> <span class="nn">torchreid</span> <span class="k">import</span> <span class="n">models</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">models</span><span class="o">.</span><span class="n">show_avai_models</span><span class="p">()</span>
</pre></div>
</div>
</dd>
</dl>
</dd></dl>
</div>
<div class="section" id="imagenet-classification-models">
<h2>ImageNet Classification Models<a class="headerlink" href="#imagenet-classification-models" title="Permalink to this headline"></a></h2>
<dl class="class">
<dt id="torchreid.models.resnet.ResNet">
<em class="property">class </em><code class="descclassname">torchreid.models.resnet.</code><code class="descname">ResNet</code><span class="sig-paren">(</span><em>num_classes</em>, <em>loss</em>, <em>block</em>, <em>layers</em>, <em>zero_init_residual=False</em>, <em>groups=1</em>, <em>width_per_group=64</em>, <em>replace_stride_with_dilation=None</em>, <em>norm_layer=None</em>, <em>last_stride=2</em>, <em>fc_dims=None</em>, <em>dropout_p=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="reference internal" href="../_modules/torchreid/models/resnet.html#ResNet"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#torchreid.models.resnet.ResNet" title="Permalink to this definition"></a></dt>
<dd><p>Residual network.</p>
<dl class="docutils">
<dt>Reference:</dt>
<dd><ul class="first last simple">
<li>He et al. Deep Residual Learning for Image Recognition. CVPR 2016.</li>
<li>Xie et al. Aggregated Residual Transformations for Deep Neural Networks. CVPR 2017.</li>
</ul>
</dd>
<dt>Public keys:</dt>
<dd><ul class="first last simple">
<li><code class="docutils literal notranslate"><span class="pre">resnet18</span></code>: ResNet18.</li>
<li><code class="docutils literal notranslate"><span class="pre">resnet34</span></code>: ResNet34.</li>
<li><code class="docutils literal notranslate"><span class="pre">resnet50</span></code>: ResNet50.</li>
<li><code class="docutils literal notranslate"><span class="pre">resnet101</span></code>: ResNet101.</li>
<li><code class="docutils literal notranslate"><span class="pre">resnet152</span></code>: ResNet152.</li>
<li><code class="docutils literal notranslate"><span class="pre">resnext50_32x4d</span></code>: ResNeXt50.</li>
<li><code class="docutils literal notranslate"><span class="pre">resnext101_32x8d</span></code>: ResNeXt101.</li>
<li><code class="docutils literal notranslate"><span class="pre">resnet50_fc512</span></code>: ResNet50 + FC.</li>
</ul>
</dd>
</dl>
</dd></dl>
<dl class="class">
<dt id="torchreid.models.senet.SENet">
<em class="property">class </em><code class="descclassname">torchreid.models.senet.</code><code class="descname">SENet</code><span class="sig-paren">(</span><em>num_classes</em>, <em>loss</em>, <em>block</em>, <em>layers</em>, <em>groups</em>, <em>reduction</em>, <em>dropout_p=0.2</em>, <em>inplanes=128</em>, <em>input_3x3=True</em>, <em>downsample_kernel_size=3</em>, <em>downsample_padding=1</em>, <em>last_stride=2</em>, <em>fc_dims=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="reference internal" href="../_modules/torchreid/models/senet.html#SENet"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#torchreid.models.senet.SENet" title="Permalink to this definition"></a></dt>
<dd><p>Squeeze-and-excitation network.</p>
<dl class="docutils">
<dt>Reference:</dt>
<dd>Hu et al. Squeeze-and-Excitation Networks. CVPR 2018.</dd>
<dt>Public keys:</dt>
<dd><ul class="first last simple">
<li><code class="docutils literal notranslate"><span class="pre">senet154</span></code>: SENet154.</li>
<li><code class="docutils literal notranslate"><span class="pre">se_resnet50</span></code>: ResNet50 + SE.</li>
<li><code class="docutils literal notranslate"><span class="pre">se_resnet101</span></code>: ResNet101 + SE.</li>
<li><code class="docutils literal notranslate"><span class="pre">se_resnet152</span></code>: ResNet152 + SE.</li>
<li><code class="docutils literal notranslate"><span class="pre">se_resnext50_32x4d</span></code>: ResNeXt50 (groups=32, width=4) + SE.</li>
<li><code class="docutils literal notranslate"><span class="pre">se_resnext101_32x4d</span></code>: ResNeXt101 (groups=32, width=4) + SE.</li>
<li><code class="docutils literal notranslate"><span class="pre">se_resnet50_fc512</span></code>: (ResNet50 + SE) + FC.</li>
</ul>
</dd>
</dl>
</dd></dl>
<dl class="class">
<dt id="torchreid.models.densenet.DenseNet">
<em class="property">class </em><code class="descclassname">torchreid.models.densenet.</code><code class="descname">DenseNet</code><span class="sig-paren">(</span><em>num_classes</em>, <em>loss</em>, <em>growth_rate=32</em>, <em>block_config=(6</em>, <em>12</em>, <em>24</em>, <em>16)</em>, <em>num_init_features=64</em>, <em>bn_size=4</em>, <em>drop_rate=0</em>, <em>fc_dims=None</em>, <em>dropout_p=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="reference internal" href="../_modules/torchreid/models/densenet.html#DenseNet"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#torchreid.models.densenet.DenseNet" title="Permalink to this definition"></a></dt>
<dd><p>Densely connected network.</p>
<dl class="docutils">
<dt>Reference:</dt>
<dd>Huang et al. Densely Connected Convolutional Networks. CVPR 2017.</dd>
<dt>Public keys:</dt>
<dd><ul class="first last simple">
<li><code class="docutils literal notranslate"><span class="pre">densenet121</span></code>: DenseNet121.</li>
<li><code class="docutils literal notranslate"><span class="pre">densenet169</span></code>: DenseNet169.</li>
<li><code class="docutils literal notranslate"><span class="pre">densenet201</span></code>: DenseNet201.</li>
<li><code class="docutils literal notranslate"><span class="pre">densenet161</span></code>: DenseNet161.</li>
<li><code class="docutils literal notranslate"><span class="pre">densenet121_fc512</span></code>: DenseNet121 + FC.</li>
</ul>
</dd>
</dl>
</dd></dl>
<dl class="class">
<dt id="torchreid.models.inceptionresnetv2.InceptionResNetV2">
<em class="property">class </em><code class="descclassname">torchreid.models.inceptionresnetv2.</code><code class="descname">InceptionResNetV2</code><span class="sig-paren">(</span><em>num_classes</em>, <em>loss='softmax'</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="reference internal" href="../_modules/torchreid/models/inceptionresnetv2.html#InceptionResNetV2"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#torchreid.models.inceptionresnetv2.InceptionResNetV2" title="Permalink to this definition"></a></dt>
<dd><p>Inception-ResNet-V2.</p>
<dl class="docutils">
<dt>Reference:</dt>
<dd>Szegedy et al. Inception-v4, Inception-ResNet and the Impact of Residual
Connections on Learning. AAAI 2017.</dd>
<dt>Public keys:</dt>
<dd><ul class="first last simple">
<li><code class="docutils literal notranslate"><span class="pre">inceptionresnetv2</span></code>: Inception-ResNet-V2.</li>
</ul>
</dd>
</dl>
</dd></dl>
<dl class="class">
<dt id="torchreid.models.inceptionv4.InceptionV4">
<em class="property">class </em><code class="descclassname">torchreid.models.inceptionv4.</code><code class="descname">InceptionV4</code><span class="sig-paren">(</span><em>num_classes</em>, <em>loss</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="reference internal" href="../_modules/torchreid/models/inceptionv4.html#InceptionV4"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#torchreid.models.inceptionv4.InceptionV4" title="Permalink to this definition"></a></dt>
<dd><p>Inception-v4.</p>
<dl class="docutils">
<dt>Reference:</dt>
<dd>Szegedy et al. Inception-v4, Inception-ResNet and the Impact of Residual
Connections on Learning. AAAI 2017.</dd>
<dt>Public keys:</dt>
<dd><ul class="first last simple">
<li><code class="docutils literal notranslate"><span class="pre">inceptionv4</span></code>: InceptionV4.</li>
</ul>
</dd>
</dl>
</dd></dl>
<dl class="class">
<dt id="torchreid.models.xception.Xception">
<em class="property">class </em><code class="descclassname">torchreid.models.xception.</code><code class="descname">Xception</code><span class="sig-paren">(</span><em>num_classes</em>, <em>loss</em>, <em>fc_dims=None</em>, <em>dropout_p=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="reference internal" href="../_modules/torchreid/models/xception.html#Xception"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#torchreid.models.xception.Xception" title="Permalink to this definition"></a></dt>
<dd><p>Xception.</p>
<dl class="docutils">
<dt>Reference:</dt>
<dd>Chollet. Xception: Deep Learning with Depthwise
Separable Convolutions. CVPR 2017.</dd>
<dt>Public keys:</dt>
<dd><ul class="first last simple">
<li><code class="docutils literal notranslate"><span class="pre">xception</span></code>: Xception.</li>
</ul>
</dd>
</dl>
</dd></dl>
</div>
<div class="section" id="lightweight-models">
<h2>Lightweight Models<a class="headerlink" href="#lightweight-models" title="Permalink to this headline"></a></h2>
<dl class="class">
<dt id="torchreid.models.nasnet.NASNetAMobile">
<em class="property">class </em><code class="descclassname">torchreid.models.nasnet.</code><code class="descname">NASNetAMobile</code><span class="sig-paren">(</span><em>num_classes</em>, <em>loss</em>, <em>stem_filters=32</em>, <em>penultimate_filters=1056</em>, <em>filters_multiplier=2</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="reference internal" href="../_modules/torchreid/models/nasnet.html#NASNetAMobile"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#torchreid.models.nasnet.NASNetAMobile" title="Permalink to this definition"></a></dt>
<dd><p>Neural Architecture Search (NAS).</p>
<dl class="docutils">
<dt>Reference:</dt>
<dd>Zoph et al. Learning Transferable Architectures
for Scalable Image Recognition. CVPR 2018.</dd>
<dt>Public keys:</dt>
<dd><ul class="first last simple">
<li><code class="docutils literal notranslate"><span class="pre">nasnetamobile</span></code>: NASNet-A Mobile.</li>
</ul>
</dd>
</dl>
</dd></dl>
<dl class="class">
<dt id="torchreid.models.mobilenetv2.MobileNetV2">
<em class="property">class </em><code class="descclassname">torchreid.models.mobilenetv2.</code><code class="descname">MobileNetV2</code><span class="sig-paren">(</span><em>num_classes</em>, <em>width_mult=1</em>, <em>loss='softmax'</em>, <em>fc_dims=None</em>, <em>dropout_p=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="reference internal" href="../_modules/torchreid/models/mobilenetv2.html#MobileNetV2"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#torchreid.models.mobilenetv2.MobileNetV2" title="Permalink to this definition"></a></dt>
<dd><p>MobileNetV2.</p>
<dl class="docutils">
<dt>Reference:</dt>
<dd>Sandler et al. MobileNetV2: Inverted Residuals and
Linear Bottlenecks. CVPR 2018.</dd>
<dt>Public keys:</dt>
<dd><ul class="first last simple">
<li><code class="docutils literal notranslate"><span class="pre">mobilenetv2_1dot0</span></code>: MobileNetV2 x1.0.</li>
<li><code class="docutils literal notranslate"><span class="pre">mobilenetv2_1dot4</span></code>: MobileNetV2 x1.4.</li>
</ul>
</dd>
</dl>
</dd></dl>
<dl class="class">
<dt id="torchreid.models.shufflenet.ShuffleNet">
<em class="property">class </em><code class="descclassname">torchreid.models.shufflenet.</code><code class="descname">ShuffleNet</code><span class="sig-paren">(</span><em>num_classes</em>, <em>loss='softmax'</em>, <em>num_groups=3</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="reference internal" href="../_modules/torchreid/models/shufflenet.html#ShuffleNet"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#torchreid.models.shufflenet.ShuffleNet" title="Permalink to this definition"></a></dt>
<dd><p>ShuffleNet.</p>
<dl class="docutils">
<dt>Reference:</dt>
<dd>Zhang et al. ShuffleNet: An Extremely Efficient Convolutional Neural
Network for Mobile Devices. CVPR 2018.</dd>
<dt>Public keys:</dt>
<dd><ul class="first last simple">
<li><code class="docutils literal notranslate"><span class="pre">shufflenet</span></code>: ShuffleNet (groups=3).</li>
</ul>
</dd>
</dl>
</dd></dl>
<dl class="class">
<dt id="torchreid.models.squeezenet.SqueezeNet">
<em class="property">class </em><code class="descclassname">torchreid.models.squeezenet.</code><code class="descname">SqueezeNet</code><span class="sig-paren">(</span><em>num_classes</em>, <em>loss</em>, <em>version=1.0</em>, <em>fc_dims=None</em>, <em>dropout_p=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="reference internal" href="../_modules/torchreid/models/squeezenet.html#SqueezeNet"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#torchreid.models.squeezenet.SqueezeNet" title="Permalink to this definition"></a></dt>
<dd><p>SqueezeNet.</p>
<dl class="docutils">
<dt>Reference:</dt>
<dd>Iandola et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters
and&lt; 0.5 MB model size. arXiv:1602.07360.</dd>
<dt>Public keys:</dt>
<dd><ul class="first last simple">
<li><code class="docutils literal notranslate"><span class="pre">squeezenet1_0</span></code>: SqueezeNet (version=1.0).</li>
<li><code class="docutils literal notranslate"><span class="pre">squeezenet1_1</span></code>: SqueezeNet (version=1.1).</li>
<li><code class="docutils literal notranslate"><span class="pre">squeezenet1_0_fc512</span></code>: SqueezeNet (version=1.0) + FC.</li>
</ul>
</dd>
</dl>
</dd></dl>
<dl class="class">
<dt id="torchreid.models.shufflenetv2.ShuffleNetV2">
<em class="property">class </em><code class="descclassname">torchreid.models.shufflenetv2.</code><code class="descname">ShuffleNetV2</code><span class="sig-paren">(</span><em>num_classes</em>, <em>loss</em>, <em>stages_repeats</em>, <em>stages_out_channels</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="reference internal" href="../_modules/torchreid/models/shufflenetv2.html#ShuffleNetV2"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#torchreid.models.shufflenetv2.ShuffleNetV2" title="Permalink to this definition"></a></dt>
<dd><p>ShuffleNetV2.</p>
<dl class="docutils">
<dt>Reference:</dt>
<dd>Ma et al. ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design. ECCV 2018.</dd>
<dt>Public keys:</dt>
<dd><ul class="first last simple">
<li><code class="docutils literal notranslate"><span class="pre">shufflenet_v2_x0_5</span></code>: ShuffleNetV2 x0.5.</li>
<li><code class="docutils literal notranslate"><span class="pre">shufflenet_v2_x1_0</span></code>: ShuffleNetV2 x1.0.</li>
<li><code class="docutils literal notranslate"><span class="pre">shufflenet_v2_x1_5</span></code>: ShuffleNetV2 x1.5.</li>
<li><code class="docutils literal notranslate"><span class="pre">shufflenet_v2_x2_0</span></code>: ShuffleNetV2 x2.0.</li>
</ul>
</dd>
</dl>
</dd></dl>
</div>
<div class="section" id="reid-specific-models">
<h2>ReID-specific Models<a class="headerlink" href="#reid-specific-models" title="Permalink to this headline"></a></h2>
<dl class="class">
<dt id="torchreid.models.mudeep.MuDeep">
<em class="property">class </em><code class="descclassname">torchreid.models.mudeep.</code><code class="descname">MuDeep</code><span class="sig-paren">(</span><em>num_classes</em>, <em>loss='softmax'</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="reference internal" href="../_modules/torchreid/models/mudeep.html#MuDeep"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#torchreid.models.mudeep.MuDeep" title="Permalink to this definition"></a></dt>
<dd><p>Multiscale deep neural network.</p>
<dl class="docutils">
<dt>Reference:</dt>
<dd>Qian et al. Multi-scale Deep Learning Architectures
for Person Re-identification. ICCV 2017.</dd>
<dt>Public keys:</dt>
<dd><ul class="first last simple">
<li><code class="docutils literal notranslate"><span class="pre">mudeep</span></code>: Multiscale deep neural network.</li>
</ul>
</dd>
</dl>
</dd></dl>
<dl class="class">
<dt id="torchreid.models.resnetmid.ResNetMid">
<em class="property">class </em><code class="descclassname">torchreid.models.resnetmid.</code><code class="descname">ResNetMid</code><span class="sig-paren">(</span><em>num_classes</em>, <em>loss</em>, <em>block</em>, <em>layers</em>, <em>last_stride=2</em>, <em>fc_dims=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="reference internal" href="../_modules/torchreid/models/resnetmid.html#ResNetMid"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#torchreid.models.resnetmid.ResNetMid" title="Permalink to this definition"></a></dt>
<dd><p>Residual network + mid-level features.</p>
<dl class="docutils">
<dt>Reference:</dt>
<dd>Yu et al. The Devil is in the Middle: Exploiting Mid-level Representations for
Cross-Domain Instance Matching. arXiv:1711.08106.</dd>
<dt>Public keys:</dt>
<dd><ul class="first last simple">
<li><code class="docutils literal notranslate"><span class="pre">resnet50mid</span></code>: ResNet50 + mid-level feature fusion.</li>
</ul>
</dd>
</dl>
</dd></dl>
<dl class="class">
<dt id="torchreid.models.hacnn.HACNN">
<em class="property">class </em><code class="descclassname">torchreid.models.hacnn.</code><code class="descname">HACNN</code><span class="sig-paren">(</span><em>num_classes, loss='softmax', nchannels=[128, 256, 384], feat_dim=512, learn_region=True, use_gpu=True, **kwargs</em><span class="sig-paren">)</span><a class="reference internal" href="../_modules/torchreid/models/hacnn.html#HACNN"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#torchreid.models.hacnn.HACNN" title="Permalink to this definition"></a></dt>
<dd><p>Harmonious Attention Convolutional Neural Network.</p>
<dl class="docutils">
<dt>Reference:</dt>
<dd>Li et al. Harmonious Attention Network for Person Re-identification. CVPR 2018.</dd>
<dt>Public keys:</dt>
<dd><ul class="first last simple">
<li><code class="docutils literal notranslate"><span class="pre">hacnn</span></code>: HACNN.</li>
</ul>
</dd>
</dl>
</dd></dl>
<dl class="class">
<dt id="torchreid.models.pcb.PCB">
<em class="property">class </em><code class="descclassname">torchreid.models.pcb.</code><code class="descname">PCB</code><span class="sig-paren">(</span><em>num_classes</em>, <em>loss</em>, <em>block</em>, <em>layers</em>, <em>parts=6</em>, <em>reduced_dim=256</em>, <em>nonlinear='relu'</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="reference internal" href="../_modules/torchreid/models/pcb.html#PCB"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#torchreid.models.pcb.PCB" title="Permalink to this definition"></a></dt>
<dd><p>Part-based Convolutional Baseline.</p>
<dl class="docutils">
<dt>Reference:</dt>
<dd>Sun et al. Beyond Part Models: Person Retrieval with Refined
Part Pooling (and A Strong Convolutional Baseline). ECCV 2018.</dd>
<dt>Public keys:</dt>
<dd><ul class="first last simple">
<li><code class="docutils literal notranslate"><span class="pre">pcb_p4</span></code>: PCB with 4-part strips.</li>
<li><code class="docutils literal notranslate"><span class="pre">pcb_p6</span></code>: PCB with 6-part strips.</li>
</ul>
</dd>
</dl>
</dd></dl>
<dl class="class">
<dt id="torchreid.models.mlfn.MLFN">
<em class="property">class </em><code class="descclassname">torchreid.models.mlfn.</code><code class="descname">MLFN</code><span class="sig-paren">(</span><em>num_classes, loss='softmax', groups=32, channels=[64, 256, 512, 1024, 2048], embed_dim=1024, **kwargs</em><span class="sig-paren">)</span><a class="reference internal" href="../_modules/torchreid/models/mlfn.html#MLFN"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#torchreid.models.mlfn.MLFN" title="Permalink to this definition"></a></dt>
<dd><p>Multi-Level Factorisation Net.</p>
<dl class="docutils">
<dt>Reference:</dt>
<dd>Chang et al. Multi-Level Factorisation Net for
Person Re-Identification. CVPR 2018.</dd>
<dt>Public keys:</dt>
<dd><ul class="first last simple">
<li><code class="docutils literal notranslate"><span class="pre">mlfn</span></code>: MLFN (Multi-Level Factorisation Net).</li>
</ul>
</dd>
</dl>
</dd></dl>
</div>
</div>
</div>
</div>
<footer>
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
<a href="optim.html" class="btn btn-neutral float-right" title="torchreid.optim" accesskey="n" rel="next">Next <span class="fa fa-arrow-circle-right"></span></a>
<a href="metrics.html" class="btn btn-neutral float-left" title="torchreid.metrics" accesskey="p" rel="prev"><span class="fa fa-arrow-circle-left"></span> Previous</a>
</div>
<hr/>
<div role="contentinfo">
<p>
&copy; Copyright 2019, Kaiyang Zhou
</p>
</div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/rtfd/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
</body>
</html>