235 lines
6.7 KiB
ReStructuredText
235 lines
6.7 KiB
ReStructuredText
Torchreid
|
|
===========
|
|
Torchreid is a library built on `PyTorch <https://pytorch.org/>`_ for deep-learning person re-identification.
|
|
|
|
It features:
|
|
|
|
- multi-GPU training
|
|
- support both image- and video-reid
|
|
- end-to-end training and evaluation
|
|
- incredibly easy preparation of reid datasets
|
|
- multi-dataset training
|
|
- cross-dataset evaluation
|
|
- standard protocol used by most research papers
|
|
- highly extensible (easy to add models, datasets, training methods, etc.)
|
|
- implementations of state-of-the-art deep reid models
|
|
- access to pretrained reid models
|
|
- advanced training techniques
|
|
- visualization tools (tensorboard, ranks, etc.)
|
|
|
|
|
|
Documentation: https://kaiyangzhou.github.io/deep-person-reid/.
|
|
|
|
Code: https://github.com/KaiyangZhou/deep-person-reid.
|
|
|
|
Model zoo: https://kaiyangzhou.github.io/deep-person-reid/MODEL_ZOO.
|
|
|
|
|
|
Installation
|
|
---------------
|
|
|
|
We recommend using `conda <https://www.anaconda.com/distribution/>`_ to manage the packages.
|
|
|
|
1. Clone ``deep-person-reid`` to your preferred directory.
|
|
|
|
.. code-block:: bash
|
|
|
|
$ git clone https://github.com/KaiyangZhou/deep-person-reid.git
|
|
|
|
2. Create a conda environment (the default name is ``torchreid``).
|
|
|
|
.. code-block:: bash
|
|
|
|
$ cd deep-person-reid/
|
|
$ conda env create -f environment.yml
|
|
$ conda activate torchreid
|
|
|
|
Do check whether ``which python`` and ``which pip`` point to the right path.
|
|
|
|
3. Install tensorboard.
|
|
|
|
.. code-block:: bash
|
|
|
|
$ pip install tb-nightly
|
|
|
|
4. Install PyTorch and torchvision (select the proper cuda version to suit your machine)
|
|
|
|
.. code-block:: bash
|
|
|
|
$ conda install pytorch torchvision cudatoolkit=9.0 -c pytorch
|
|
|
|
5. Install ``torchreid``
|
|
|
|
.. code-block:: bash
|
|
|
|
$ python setup.py develop
|
|
|
|
|
|
Get started: 30 seconds to Torchreid
|
|
-------------------------------------
|
|
1. Import ``torchreid``
|
|
|
|
.. code-block:: python
|
|
|
|
import torchreid
|
|
|
|
2. Load data manager
|
|
|
|
.. code-block:: python
|
|
|
|
datamanager = torchreid.data.ImageDataManager(
|
|
root='reid-data',
|
|
sources='market1501',
|
|
height=256,
|
|
width=128,
|
|
batch_size=32,
|
|
transforms=['random_flip', 'random_crop']
|
|
)
|
|
|
|
3 Build model, optimizer and lr_scheduler
|
|
|
|
.. code-block:: python
|
|
|
|
model = torchreid.models.build_model(
|
|
name='resnet50',
|
|
num_classes=datamanager.num_train_pids,
|
|
loss='softmax',
|
|
pretrained=True
|
|
)
|
|
|
|
model = model.cuda()
|
|
|
|
optimizer = torchreid.optim.build_optimizer(
|
|
model,
|
|
optim='adam',
|
|
lr=0.0003
|
|
)
|
|
|
|
scheduler = torchreid.optim.build_lr_scheduler(
|
|
optimizer,
|
|
lr_scheduler='single_step',
|
|
stepsize=20
|
|
)
|
|
|
|
4. Build engine
|
|
|
|
.. code-block:: python
|
|
|
|
engine = torchreid.engine.ImageSoftmaxEngine(
|
|
datamanager,
|
|
model,
|
|
optimizer=optimizer,
|
|
scheduler=scheduler,
|
|
label_smooth=True
|
|
)
|
|
|
|
5. Run training and test
|
|
|
|
.. code-block:: python
|
|
|
|
engine.run(
|
|
save_dir='log/resnet50',
|
|
max_epoch=60,
|
|
eval_freq=10,
|
|
print_freq=10,
|
|
test_only=False
|
|
)
|
|
|
|
|
|
A unified interface
|
|
-----------------------
|
|
In "deep-person-reid/scripts/", we provide a unified interface including a default parser file ``default_parser.py`` and the main script ``main.py``. For example, to train an image reid model on Market1501 using softmax, you can do
|
|
|
|
.. code-block:: bash
|
|
|
|
python main.py \
|
|
--root path/to/reid-data \
|
|
--app image \
|
|
--loss softmax \
|
|
--label-smooth \
|
|
-s market1501 \
|
|
-a resnet50 \
|
|
--optim adam \
|
|
--lr 0.0003 \
|
|
--max-epoch 60 \
|
|
--stepsize 20 40 \
|
|
--batch-size 32 \
|
|
--transforms random_flip random_crop \
|
|
--save-dir log/resnet50-market1501-softmax \
|
|
--gpu-devices 0
|
|
|
|
Please refer to ``default_parser.py`` and ``main.py`` for more details.
|
|
|
|
|
|
Datasets
|
|
--------
|
|
|
|
Image-reid datasets
|
|
^^^^^^^^^^^^^^^^^^^^^
|
|
- `Market1501 <https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Zheng_Scalable_Person_Re-Identification_ICCV_2015_paper.pdf>`_
|
|
- `CUHK03 <https://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Li_DeepReID_Deep_Filter_2014_CVPR_paper.pdf>`_
|
|
- `DukeMTMC-reID <https://arxiv.org/abs/1701.07717>`_
|
|
- `MSMT17 <https://arxiv.org/abs/1711.08565>`_
|
|
- `VIPeR <http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.331.7285&rep=rep1&type=pdf>`_
|
|
- `GRID <http://www.eecs.qmul.ac.uk/~txiang/publications/LoyXiangGong_cvpr_2009.pdf>`_
|
|
- `CUHK01 <http://www.ee.cuhk.edu.hk/~xgwang/papers/liZWaccv12.pdf>`_
|
|
- `SenseReID <http://openaccess.thecvf.com/content_cvpr_2017/papers/Zhao_Spindle_Net_Person_CVPR_2017_paper.pdf>`_
|
|
- `QMUL-iLIDS <http://www.eecs.qmul.ac.uk/~sgg/papers/ZhengGongXiang_BMVC09.pdf>`_
|
|
- `PRID <https://pdfs.semanticscholar.org/4c1b/f0592be3e535faf256c95e27982db9b3d3d3.pdf>`_
|
|
|
|
Video-reid datasets
|
|
^^^^^^^^^^^^^^^^^^^^^^^
|
|
- `MARS <http://www.liangzheng.org/1320.pdf>`_
|
|
- `iLIDS-VID <https://www.eecs.qmul.ac.uk/~sgg/papers/WangEtAl_ECCV14.pdf>`_
|
|
- `PRID2011 <https://pdfs.semanticscholar.org/4c1b/f0592be3e535faf256c95e27982db9b3d3d3.pdf>`_
|
|
- `DukeMTMC-VideoReID <http://openaccess.thecvf.com/content_cvpr_2018/papers/Wu_Exploit_the_Unknown_CVPR_2018_paper.pdf>`_
|
|
|
|
Models
|
|
-------
|
|
|
|
ImageNet classification models
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
- `ResNet <https://arxiv.org/abs/1512.03385>`_
|
|
- `ResNeXt <https://arxiv.org/abs/1611.05431>`_
|
|
- `SENet <https://arxiv.org/abs/1709.01507>`_
|
|
- `DenseNet <https://arxiv.org/abs/1608.06993>`_
|
|
- `Inception-ResNet-V2 <https://arxiv.org/abs/1602.07261>`_
|
|
- `Inception-V4 <https://arxiv.org/abs/1602.07261>`_
|
|
- `Xception <https://arxiv.org/abs/1610.02357>`_
|
|
|
|
Lightweight models
|
|
^^^^^^^^^^^^^^^^^^^
|
|
- `NASNet <https://arxiv.org/abs/1707.07012>`_
|
|
- `MobileNetV2 <https://arxiv.org/abs/1801.04381>`_
|
|
- `ShuffleNet <https://arxiv.org/abs/1707.01083>`_
|
|
- `ShuffleNetV2 <https://arxiv.org/abs/1807.11164>`_
|
|
- `SqueezeNet <https://arxiv.org/abs/1602.07360>`_
|
|
|
|
ReID-specific models
|
|
^^^^^^^^^^^^^^^^^^^^^^
|
|
- `MuDeep <https://arxiv.org/abs/1709.05165>`_
|
|
- `ResNet-mid <https://arxiv.org/abs/1711.08106>`_
|
|
- `HACNN <https://arxiv.org/abs/1802.08122>`_
|
|
- `PCB <https://arxiv.org/abs/1711.09349>`_
|
|
- `MLFN <https://arxiv.org/abs/1803.09132>`_
|
|
- `OSNet <https://arxiv.org/abs/1905.00953>`_
|
|
|
|
Losses
|
|
------
|
|
- `Softmax (cross entropy loss with label smoothing) <https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Szegedy_Rethinking_the_Inception_CVPR_2016_paper.pdf>`_
|
|
- `Triplet (hard example mining triplet loss) <https://arxiv.org/abs/1703.07737>`_
|
|
|
|
|
|
Citation
|
|
---------
|
|
If you find this code useful to your research, please cite the following publication.
|
|
|
|
.. code-block:: bash
|
|
|
|
@article{zhou2019osnet,
|
|
title={Omni-Scale Feature Learning for Person Re-Identification},
|
|
author={Zhou, Kaiyang and Yang, Yongxin and Cavallaro, Andrea and Xiang, Tao},
|
|
journal={arXiv preprint arXiv:1905.00953},
|
|
year={2019}
|
|
}
|