deep-person-reid/index.html

508 lines
28 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Torchreid &mdash; torchreid 1.0.6 documentation</title>
<script type="text/javascript" src="_static/js/modernizr.min.js"></script>
<script type="text/javascript" id="documentation_options" data-url_root="./" src="_static/documentation_options.js"></script>
<script type="text/javascript" src="_static/jquery.js"></script>
<script type="text/javascript" src="_static/underscore.js"></script>
<script type="text/javascript" src="_static/doctools.js"></script>
<script type="text/javascript" src="_static/language_data.js"></script>
<script async="async" type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-AMS-MML_HTMLorMML"></script>
<script type="text/javascript" src="_static/js/theme.js"></script>
<link rel="stylesheet" href="_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="_static/pygments.css" type="text/css" />
<link rel="index" title="Index" href="genindex.html" />
<link rel="search" title="Search" href="search.html" />
<link rel="next" title="How-to" href="user_guide.html" />
</head>
<body class="wy-body-for-nav">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
<div class="wy-side-scroll">
<div class="wy-side-nav-search" >
<a href="#" class="icon icon-home"> torchreid
</a>
<div class="version">
1.0.6
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="search.html" method="get">
<input type="text" name="q" placeholder="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<ul>
<li class="toctree-l1"><a class="reference internal" href="user_guide.html">How-to</a></li>
<li class="toctree-l1"><a class="reference internal" href="datasets.html">Datasets</a></li>
<li class="toctree-l1"><a class="reference internal" href="evaluation.html">Evaluation</a></li>
</ul>
<p class="caption"><span class="caption-text">Package Reference</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="pkg/data.html">torchreid.data</a></li>
<li class="toctree-l1"><a class="reference internal" href="pkg/engine.html">torchreid.engine</a></li>
<li class="toctree-l1"><a class="reference internal" href="pkg/losses.html">torchreid.losses</a></li>
<li class="toctree-l1"><a class="reference internal" href="pkg/metrics.html">torchreid.metrics</a></li>
<li class="toctree-l1"><a class="reference internal" href="pkg/models.html">torchreid.models</a></li>
<li class="toctree-l1"><a class="reference internal" href="pkg/optim.html">torchreid.optim</a></li>
<li class="toctree-l1"><a class="reference internal" href="pkg/utils.html">torchreid.utils</a></li>
</ul>
<p class="caption"><span class="caption-text">Resources</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="AWESOME_REID.html">Awesome-ReID</a></li>
<li class="toctree-l1"><a class="reference internal" href="MODEL_ZOO.html">Model Zoo</a></li>
</ul>
</div>
</div>
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
<nav class="wy-nav-top" aria-label="top navigation">
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="#">torchreid</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="wy-breadcrumbs">
<li><a href="#">Docs</a> &raquo;</li>
<li>Torchreid</li>
<li class="wy-breadcrumbs-aside">
<a href="_sources/index.rst.txt" rel="nofollow"> View page source</a>
</li>
</ul>
<hr/>
</div>
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<div class="section" id="torchreid">
<h1>Torchreid<a class="headerlink" href="#torchreid" title="Permalink to this headline"></a></h1>
<a class="reference external image-reference" href="https://github.com/KaiyangZhou/deep-person-reid/blob/master/LICENSE"><img alt="GitHub license" src="https://img.shields.io/github/license/KaiyangZhou/deep-person-reid" /></a>
<p>Torchreid is a library for deep-learning person re-identification in <a class="reference external" href="https://pytorch.org/">PyTorch</a>.</p>
<p>It features:</p>
<ul class="simple">
<li>multi-GPU training</li>
<li>support both image- and video-reid</li>
<li>end-to-end training and evaluation</li>
<li>incredibly easy preparation of reid datasets</li>
<li>multi-dataset training</li>
<li>cross-dataset evaluation</li>
<li>standard protocol used by most research papers</li>
<li>highly extensible (easy to add models, datasets, training methods, etc.)</li>
<li>implementations of state-of-the-art deep reid models</li>
<li>access to pretrained reid models</li>
<li>advanced training techniques</li>
<li>visualization tools (tensorboard, ranks, etc.)</li>
</ul>
<p>Code: <a class="reference external" href="https://github.com/KaiyangZhou/deep-person-reid">https://github.com/KaiyangZhou/deep-person-reid</a>.</p>
<p>Documentation: <a class="reference external" href="https://kaiyangzhou.github.io/deep-person-reid/">https://kaiyangzhou.github.io/deep-person-reid/</a>.</p>
<p>How-to instructions: <a class="reference external" href="https://kaiyangzhou.github.io/deep-person-reid/user_guide">https://kaiyangzhou.github.io/deep-person-reid/user_guide</a>.</p>
<p>Model zoo: <a class="reference external" href="https://kaiyangzhou.github.io/deep-person-reid/MODEL_ZOO">https://kaiyangzhou.github.io/deep-person-reid/MODEL_ZOO</a>.</p>
<p>Tech report: <a class="reference external" href="https://arxiv.org/abs/1910.10093">https://arxiv.org/abs/1910.10093</a>.</p>
<p>You can find some research projects that are built on top of Torchreid <a class="reference external" href="https://github.com/KaiyangZhou/deep-person-reid/tree/master/projects">here</a>.</p>
<div class="section" id="installation">
<h2>Installation<a class="headerlink" href="#installation" title="Permalink to this headline"></a></h2>
<p>Make sure <a class="reference external" href="https://www.anaconda.com/distribution/">conda</a> is installed.</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span><span class="c1"># cd to your preferred directory and clone this repo</span>
git clone https://github.com/KaiyangZhou/deep-person-reid.git
<span class="c1"># create environment</span>
<span class="nb">cd</span> deep-person-reid/
conda create --name torchreid <span class="nv">python</span><span class="o">=</span><span class="m">3</span>.7
conda activate torchreid
<span class="c1"># install dependencies</span>
<span class="c1"># make sure `which python` and `which pip` point to the correct path</span>
pip install -r requirements.txt
<span class="c1"># install torch and torchvision (select the proper cuda version to suit your machine)</span>
conda install pytorch torchvision <span class="nv">cudatoolkit</span><span class="o">=</span><span class="m">9</span>.0 -c pytorch
<span class="c1"># install torchreid (don&#39;t need to re-build it if you modify the source code)</span>
python setup.py develop
</pre></div>
</div>
</div>
<div class="section" id="get-started-30-seconds-to-torchreid">
<h2>Get started: 30 seconds to Torchreid<a class="headerlink" href="#get-started-30-seconds-to-torchreid" title="Permalink to this headline"></a></h2>
<ol class="arabic simple">
<li>Import <code class="docutils literal notranslate"><span class="pre">torchreid</span></code></li>
</ol>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">torchreid</span>
</pre></div>
</div>
<ol class="arabic simple" start="2">
<li>Load data manager</li>
</ol>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">datamanager</span> <span class="o">=</span> <span class="n">torchreid</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">ImageDataManager</span><span class="p">(</span>
<span class="n">root</span><span class="o">=</span><span class="s1">&#39;reid-data&#39;</span><span class="p">,</span>
<span class="n">sources</span><span class="o">=</span><span class="s1">&#39;market1501&#39;</span><span class="p">,</span>
<span class="n">targets</span><span class="o">=</span><span class="s1">&#39;market1501&#39;</span><span class="p">,</span>
<span class="n">height</span><span class="o">=</span><span class="mi">256</span><span class="p">,</span>
<span class="n">width</span><span class="o">=</span><span class="mi">128</span><span class="p">,</span>
<span class="n">batch_size_train</span><span class="o">=</span><span class="mi">32</span><span class="p">,</span>
<span class="n">batch_size_test</span><span class="o">=</span><span class="mi">100</span><span class="p">,</span>
<span class="n">transforms</span><span class="o">=</span><span class="p">[</span><span class="s1">&#39;random_flip&#39;</span><span class="p">,</span> <span class="s1">&#39;random_crop&#39;</span><span class="p">]</span>
<span class="p">)</span>
</pre></div>
</div>
<p>3 Build model, optimizer and lr_scheduler</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">model</span> <span class="o">=</span> <span class="n">torchreid</span><span class="o">.</span><span class="n">models</span><span class="o">.</span><span class="n">build_model</span><span class="p">(</span>
<span class="n">name</span><span class="o">=</span><span class="s1">&#39;resnet50&#39;</span><span class="p">,</span>
<span class="n">num_classes</span><span class="o">=</span><span class="n">datamanager</span><span class="o">.</span><span class="n">num_train_pids</span><span class="p">,</span>
<span class="n">loss</span><span class="o">=</span><span class="s1">&#39;softmax&#39;</span><span class="p">,</span>
<span class="n">pretrained</span><span class="o">=</span><span class="bp">True</span>
<span class="p">)</span>
<span class="n">model</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">cuda</span><span class="p">()</span>
<span class="n">optimizer</span> <span class="o">=</span> <span class="n">torchreid</span><span class="o">.</span><span class="n">optim</span><span class="o">.</span><span class="n">build_optimizer</span><span class="p">(</span>
<span class="n">model</span><span class="p">,</span>
<span class="n">optim</span><span class="o">=</span><span class="s1">&#39;adam&#39;</span><span class="p">,</span>
<span class="n">lr</span><span class="o">=</span><span class="mf">0.0003</span>
<span class="p">)</span>
<span class="n">scheduler</span> <span class="o">=</span> <span class="n">torchreid</span><span class="o">.</span><span class="n">optim</span><span class="o">.</span><span class="n">build_lr_scheduler</span><span class="p">(</span>
<span class="n">optimizer</span><span class="p">,</span>
<span class="n">lr_scheduler</span><span class="o">=</span><span class="s1">&#39;single_step&#39;</span><span class="p">,</span>
<span class="n">stepsize</span><span class="o">=</span><span class="mi">20</span>
<span class="p">)</span>
</pre></div>
</div>
<ol class="arabic simple" start="4">
<li>Build engine</li>
</ol>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">engine</span> <span class="o">=</span> <span class="n">torchreid</span><span class="o">.</span><span class="n">engine</span><span class="o">.</span><span class="n">ImageSoftmaxEngine</span><span class="p">(</span>
<span class="n">datamanager</span><span class="p">,</span>
<span class="n">model</span><span class="p">,</span>
<span class="n">optimizer</span><span class="o">=</span><span class="n">optimizer</span><span class="p">,</span>
<span class="n">scheduler</span><span class="o">=</span><span class="n">scheduler</span><span class="p">,</span>
<span class="n">label_smooth</span><span class="o">=</span><span class="bp">True</span>
<span class="p">)</span>
</pre></div>
</div>
<ol class="arabic simple" start="5">
<li>Run training and test</li>
</ol>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">engine</span><span class="o">.</span><span class="n">run</span><span class="p">(</span>
<span class="n">save_dir</span><span class="o">=</span><span class="s1">&#39;log/resnet50&#39;</span><span class="p">,</span>
<span class="n">max_epoch</span><span class="o">=</span><span class="mi">60</span><span class="p">,</span>
<span class="n">eval_freq</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span>
<span class="n">print_freq</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span>
<span class="n">test_only</span><span class="o">=</span><span class="bp">False</span>
<span class="p">)</span>
</pre></div>
</div>
</div>
<div class="section" id="a-unified-interface">
<h2>A unified interface<a class="headerlink" href="#a-unified-interface" title="Permalink to this headline"></a></h2>
<p>In “deep-person-reid/scripts/”, we provide a unified interface to train and test a model. See “scripts/main.py” and “scripts/default_config.py” for more details. “configs/” contains some predefined configs which you can use as a starting point.</p>
<p>Below we provide an example to train and test <a class="reference external" href="https://arxiv.org/abs/1905.00953">OSNet (Zhou et al. ICCV19)</a>. Assume <code class="code docutils literal notranslate"><span class="pre">PATH_TO_DATA</span></code> is the directory containing reid datasets.</p>
<div class="section" id="conventional-setting">
<h3>Conventional setting<a class="headerlink" href="#conventional-setting" title="Permalink to this headline"></a></h3>
<p>To train OSNet on Market1501, do</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>python scripts/main.py <span class="se">\</span>
--config-file configs/im_osnet_x1_0_softmax_256x128_amsgrad_cosine.yaml <span class="se">\</span>
--transforms random_flip random_erase <span class="se">\</span>
--root <span class="nv">$PATH_TO_DATA</span> <span class="se">\</span>
--gpu-devices <span class="m">0</span>
</pre></div>
</div>
<p>The config file sets Market1501 as the default dataset. If you wanna use DukeMTMC-reID, do</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>python scripts/main.py <span class="se">\</span>
--config-file configs/im_osnet_x1_0_softmax_256x128_amsgrad_cosine.yaml <span class="se">\</span>
-s dukemtmcreid <span class="se">\</span>
-t dukemtmcreid <span class="se">\</span>
--transforms random_flip random_erase <span class="se">\</span>
--root <span class="nv">$PATH_TO_DATA</span> <span class="se">\</span>
--gpu-devices <span class="m">0</span> <span class="se">\</span>
data.save_dir log/osnet_x1_0_dukemtmcreid_softmax_cosinelr
</pre></div>
</div>
<p>The code will automatically (download and) load the ImageNet pretrained weights. After the training is done, the model will be saved as “log/osnet_x1_0_market1501_softmax_cosinelr/model.pth.tar-250”. Under the same folder, you can find the <a class="reference external" href="https://pytorch.org/docs/stable/tensorboard.html">tensorboard</a> file. To visualize the learning curves using tensorboard, you can run <code class="code docutils literal notranslate"><span class="pre">tensorboard</span> <span class="pre">--logdir=log/osnet_x1_0_market1501_softmax_cosinelr</span></code> in the terminal and visit <code class="code docutils literal notranslate"><span class="pre">http://localhost:6006/</span></code> in your web browser.</p>
<p>Evaluation is automatically performed at the end of training. To run the test again using the trained model, do</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>python scripts/main.py <span class="se">\</span>
--config-file configs/im_osnet_x1_0_softmax_256x128_amsgrad_cosine.yaml <span class="se">\</span>
--root <span class="nv">$PATH_TO_DATA</span> <span class="se">\</span>
--gpu-devices <span class="m">0</span> <span class="se">\</span>
model.load_weights log/osnet_x1_0_market1501_softmax_cosinelr/model.pth.tar-250 <span class="se">\</span>
test.evaluate True
</pre></div>
</div>
</div>
<div class="section" id="cross-domain-setting">
<h3>Cross-domain setting<a class="headerlink" href="#cross-domain-setting" title="Permalink to this headline"></a></h3>
<p>Suppose you wanna train OSNet on DukeMTMC-reID and test its performance on Market1501, you can do</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>python scripts/main.py <span class="se">\</span>
--config-file configs/im_osnet_x1_0_softmax_256x128_amsgrad.yaml <span class="se">\</span>
-s dukemtmcreid <span class="se">\</span>
-t market1501 <span class="se">\</span>
--transforms random_flip color_jitter <span class="se">\</span>
--root <span class="nv">$PATH_TO_DATA</span> <span class="se">\</span>
--gpu-devices <span class="m">0</span>
</pre></div>
</div>
<p>Here we only test the cross-domain performance. However, if you also want to test the performance on the source dataset, i.e. DukeMTMC-reID, you can set <code class="code docutils literal notranslate"><span class="pre">-t</span> <span class="pre">dukemtmcreid</span> <span class="pre">market1501</span></code>, which will evaluate the model on the two datasets separately.</p>
<p>Different from the same-domain setting, here we replace <code class="code docutils literal notranslate"><span class="pre">random_erase</span></code> with <code class="code docutils literal notranslate"><span class="pre">color_jitter</span></code>. This can improve the generalization performance on the unseen target dataset.</p>
<p>Pretrained models are available in the <a class="reference external" href="https://kaiyangzhou.github.io/deep-person-reid/MODEL_ZOO.html">Model Zoo</a>.</p>
</div>
</div>
<div class="section" id="datasets">
<h2>Datasets<a class="headerlink" href="#datasets" title="Permalink to this headline"></a></h2>
<div class="section" id="image-reid-datasets">
<h3>Image-reid datasets<a class="headerlink" href="#image-reid-datasets" title="Permalink to this headline"></a></h3>
<ul class="simple">
<li><a class="reference external" href="https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Zheng_Scalable_Person_Re-Identification_ICCV_2015_paper.pdf">Market1501</a></li>
<li><a class="reference external" href="https://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Li_DeepReID_Deep_Filter_2014_CVPR_paper.pdf">CUHK03</a></li>
<li><a class="reference external" href="https://arxiv.org/abs/1701.07717">DukeMTMC-reID</a></li>
<li><a class="reference external" href="https://arxiv.org/abs/1711.08565">MSMT17</a></li>
<li><a class="reference external" href="http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.331.7285&amp;rep=rep1&amp;type=pdf">VIPeR</a></li>
<li><a class="reference external" href="http://www.eecs.qmul.ac.uk/~txiang/publications/LoyXiangGong_cvpr_2009.pdf">GRID</a></li>
<li><a class="reference external" href="http://www.ee.cuhk.edu.hk/~xgwang/papers/liZWaccv12.pdf">CUHK01</a></li>
<li><a class="reference external" href="http://openaccess.thecvf.com/content_cvpr_2017/papers/Zhao_Spindle_Net_Person_CVPR_2017_paper.pdf">SenseReID</a></li>
<li><a class="reference external" href="http://www.eecs.qmul.ac.uk/~sgg/papers/ZhengGongXiang_BMVC09.pdf">QMUL-iLIDS</a></li>
<li><a class="reference external" href="https://pdfs.semanticscholar.org/4c1b/f0592be3e535faf256c95e27982db9b3d3d3.pdf">PRID</a></li>
</ul>
</div>
<div class="section" id="video-reid-datasets">
<h3>Video-reid datasets<a class="headerlink" href="#video-reid-datasets" title="Permalink to this headline"></a></h3>
<ul class="simple">
<li><a class="reference external" href="http://www.liangzheng.org/1320.pdf">MARS</a></li>
<li><a class="reference external" href="https://www.eecs.qmul.ac.uk/~sgg/papers/WangEtAl_ECCV14.pdf">iLIDS-VID</a></li>
<li><a class="reference external" href="https://pdfs.semanticscholar.org/4c1b/f0592be3e535faf256c95e27982db9b3d3d3.pdf">PRID2011</a></li>
<li><a class="reference external" href="http://openaccess.thecvf.com/content_cvpr_2018/papers/Wu_Exploit_the_Unknown_CVPR_2018_paper.pdf">DukeMTMC-VideoReID</a></li>
</ul>
</div>
</div>
<div class="section" id="models">
<h2>Models<a class="headerlink" href="#models" title="Permalink to this headline"></a></h2>
<div class="section" id="imagenet-classification-models">
<h3>ImageNet classification models<a class="headerlink" href="#imagenet-classification-models" title="Permalink to this headline"></a></h3>
<ul class="simple">
<li><a class="reference external" href="https://arxiv.org/abs/1512.03385">ResNet</a></li>
<li><a class="reference external" href="https://arxiv.org/abs/1611.05431">ResNeXt</a></li>
<li><a class="reference external" href="https://arxiv.org/abs/1709.01507">SENet</a></li>
<li><a class="reference external" href="https://arxiv.org/abs/1608.06993">DenseNet</a></li>
<li><a class="reference external" href="https://arxiv.org/abs/1602.07261">Inception-ResNet-V2</a></li>
<li><a class="reference external" href="https://arxiv.org/abs/1602.07261">Inception-V4</a></li>
<li><a class="reference external" href="https://arxiv.org/abs/1610.02357">Xception</a></li>
<li><a class="reference external" href="https://arxiv.org/abs/1807.09441">IBN-Net</a></li>
</ul>
</div>
<div class="section" id="lightweight-models">
<h3>Lightweight models<a class="headerlink" href="#lightweight-models" title="Permalink to this headline"></a></h3>
<ul class="simple">
<li><a class="reference external" href="https://arxiv.org/abs/1707.07012">NASNet</a></li>
<li><a class="reference external" href="https://arxiv.org/abs/1801.04381">MobileNetV2</a></li>
<li><a class="reference external" href="https://arxiv.org/abs/1707.01083">ShuffleNet</a></li>
<li><a class="reference external" href="https://arxiv.org/abs/1807.11164">ShuffleNetV2</a></li>
<li><a class="reference external" href="https://arxiv.org/abs/1602.07360">SqueezeNet</a></li>
</ul>
</div>
<div class="section" id="reid-specific-models">
<h3>ReID-specific models<a class="headerlink" href="#reid-specific-models" title="Permalink to this headline"></a></h3>
<ul class="simple">
<li><a class="reference external" href="https://arxiv.org/abs/1709.05165">MuDeep</a></li>
<li><a class="reference external" href="https://arxiv.org/abs/1711.08106">ResNet-mid</a></li>
<li><a class="reference external" href="https://arxiv.org/abs/1802.08122">HACNN</a></li>
<li><a class="reference external" href="https://arxiv.org/abs/1711.09349">PCB</a></li>
<li><a class="reference external" href="https://arxiv.org/abs/1803.09132">MLFN</a></li>
<li><a class="reference external" href="https://arxiv.org/abs/1905.00953">OSNet</a></li>
<li><a class="reference external" href="https://arxiv.org/abs/1910.06827">OSNet-AIN</a></li>
</ul>
</div>
</div>
<div class="section" id="losses">
<h2>Losses<a class="headerlink" href="#losses" title="Permalink to this headline"></a></h2>
<ul class="simple">
<li><a class="reference external" href="https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Szegedy_Rethinking_the_Inception_CVPR_2016_paper.pdf">Softmax (cross entropy loss with label smoothing)</a></li>
<li><a class="reference external" href="https://arxiv.org/abs/1703.07737">Triplet (hard example mining triplet loss)</a></li>
</ul>
</div>
<div class="section" id="useful-links">
<h2>Useful links<a class="headerlink" href="#useful-links" title="Permalink to this headline"></a></h2>
<ul class="simple">
<li><a class="reference external" href="https://github.com/RodMech/OSNet-IBN1-Lite">OSNet-IBN1-Lite (test-only code with lite docker container)</a></li>
</ul>
</div>
<div class="section" id="citation">
<h2>Citation<a class="headerlink" href="#citation" title="Permalink to this headline"></a></h2>
<p>If you find this code useful to your research, please cite the following papers.</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>@article<span class="o">{</span>torchreid,
<span class="nv">title</span><span class="o">={</span>Torchreid: A Library <span class="k">for</span> Deep Learning Person Re-Identification in Pytorch<span class="o">}</span>,
<span class="nv">author</span><span class="o">={</span>Zhou, Kaiyang and Xiang, Tao<span class="o">}</span>,
<span class="nv">journal</span><span class="o">={</span>arXiv preprint arXiv:1910.10093<span class="o">}</span>,
<span class="nv">year</span><span class="o">={</span><span class="m">2019</span><span class="o">}</span>
<span class="o">}</span>
@inproceedings<span class="o">{</span>zhou2019osnet,
<span class="nv">title</span><span class="o">={</span>Omni-Scale Feature Learning <span class="k">for</span> Person Re-Identification<span class="o">}</span>,
<span class="nv">author</span><span class="o">={</span>Zhou, Kaiyang and Yang, Yongxin and Cavallaro, Andrea and Xiang, Tao<span class="o">}</span>,
<span class="nv">booktitle</span><span class="o">={</span>ICCV<span class="o">}</span>,
<span class="nv">year</span><span class="o">={</span><span class="m">2019</span><span class="o">}</span>
<span class="o">}</span>
@article<span class="o">{</span>zhou2019learning,
<span class="nv">title</span><span class="o">={</span>Learning Generalisable Omni-Scale Representations <span class="k">for</span> Person Re-Identification<span class="o">}</span>,
<span class="nv">author</span><span class="o">={</span>Zhou, Kaiyang and Yang, Yongxin and Cavallaro, Andrea and Xiang, Tao<span class="o">}</span>,
<span class="nv">journal</span><span class="o">={</span>arXiv preprint arXiv:1910.06827<span class="o">}</span>,
<span class="nv">year</span><span class="o">={</span><span class="m">2019</span><span class="o">}</span>
<span class="o">}</span>
</pre></div>
</div>
<div class="toctree-wrapper compound">
</div>
<div class="toctree-wrapper compound">
</div>
<div class="toctree-wrapper compound">
</div>
</div>
</div>
<div class="section" id="indices-and-tables">
<h1>Indices and tables<a class="headerlink" href="#indices-and-tables" title="Permalink to this headline"></a></h1>
<ul class="simple">
<li><a class="reference internal" href="genindex.html"><span class="std std-ref">Index</span></a></li>
<li><a class="reference internal" href="py-modindex.html"><span class="std std-ref">Module Index</span></a></li>
</ul>
</div>
</div>
</div>
<footer>
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
<a href="user_guide.html" class="btn btn-neutral float-right" title="How-to" accesskey="n" rel="next">Next <span class="fa fa-arrow-circle-right"></span></a>
</div>
<hr/>
<div role="contentinfo">
<p>
&copy; Copyright 2019, Kaiyang Zhou
</p>
</div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/rtfd/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
</body>
</html>