deep-person-reid/_modules/torchreid/utils/torchtools.html

530 lines
40 KiB
HTML

<!DOCTYPE html>
<html class="writer-html5" lang="en" >
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>torchreid.utils.torchtools &mdash; torchreid 1.4.0 documentation</title>
<link rel="stylesheet" href="../../../_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="../../../_static/pygments.css" type="text/css" />
<!--[if lt IE 9]>
<script src="../../../_static/js/html5shiv.min.js"></script>
<![endif]-->
<script type="text/javascript" id="documentation_options" data-url_root="../../../" src="../../../_static/documentation_options.js"></script>
<script type="text/javascript" src="../../../_static/jquery.js"></script>
<script type="text/javascript" src="../../../_static/underscore.js"></script>
<script type="text/javascript" src="../../../_static/doctools.js"></script>
<script type="text/javascript" src="../../../_static/language_data.js"></script>
<script async="async" type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-AMS-MML_HTMLorMML"></script>
<script type="text/javascript" src="../../../_static/js/theme.js"></script>
<link rel="index" title="Index" href="../../../genindex.html" />
<link rel="search" title="Search" href="../../../search.html" />
</head>
<body class="wy-body-for-nav">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
<div class="wy-side-scroll">
<div class="wy-side-nav-search" >
<a href="../../../index.html" class="icon icon-home" alt="Documentation Home"> torchreid
</a>
<div class="version">
1.4.0
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../../../search.html" method="get">
<input type="text" name="q" placeholder="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../../user_guide.html">How-to</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../datasets.html">Datasets</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../evaluation.html">Evaluation</a></li>
</ul>
<p class="caption"><span class="caption-text">Package Reference</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../../pkg/data.html">torchreid.data</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../pkg/engine.html">torchreid.engine</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../pkg/losses.html">torchreid.losses</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../pkg/metrics.html">torchreid.metrics</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../pkg/models.html">torchreid.models</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../pkg/optim.html">torchreid.optim</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../pkg/utils.html">torchreid.utils</a></li>
</ul>
<p class="caption"><span class="caption-text">Resources</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../../AWESOME_REID.html">Awesome-ReID</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../MODEL_ZOO.html">Model Zoo</a></li>
</ul>
</div>
</div>
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
<nav class="wy-nav-top" aria-label="top navigation">
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="../../../index.html">torchreid</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="wy-breadcrumbs">
<li><a href="../../../index.html" class="icon icon-home"></a> &raquo;</li>
<li><a href="../../index.html">Module code</a> &raquo;</li>
<li>torchreid.utils.torchtools</li>
<li class="wy-breadcrumbs-aside">
</li>
</ul>
<hr/>
</div>
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<h1>Source code for torchreid.utils.torchtools</h1><div class="highlight"><pre>
<span></span><span class="kn">from</span> <span class="nn">__future__</span> <span class="kn">import</span> <span class="n">division</span><span class="p">,</span> <span class="n">print_function</span><span class="p">,</span> <span class="n">absolute_import</span>
<span class="kn">import</span> <span class="nn">pickle</span>
<span class="kn">import</span> <span class="nn">shutil</span>
<span class="kn">import</span> <span class="nn">os.path</span> <span class="k">as</span> <span class="nn">osp</span>
<span class="kn">import</span> <span class="nn">warnings</span>
<span class="kn">from</span> <span class="nn">functools</span> <span class="kn">import</span> <span class="n">partial</span>
<span class="kn">from</span> <span class="nn">collections</span> <span class="kn">import</span> <span class="n">OrderedDict</span>
<span class="kn">import</span> <span class="nn">torch</span>
<span class="kn">import</span> <span class="nn">torch.nn</span> <span class="k">as</span> <span class="nn">nn</span>
<span class="kn">from</span> <span class="nn">.tools</span> <span class="kn">import</span> <span class="n">mkdir_if_missing</span>
<span class="n">__all__</span> <span class="o">=</span> <span class="p">[</span>
<span class="s1">&#39;save_checkpoint&#39;</span><span class="p">,</span> <span class="s1">&#39;load_checkpoint&#39;</span><span class="p">,</span> <span class="s1">&#39;resume_from_checkpoint&#39;</span><span class="p">,</span>
<span class="s1">&#39;open_all_layers&#39;</span><span class="p">,</span> <span class="s1">&#39;open_specified_layers&#39;</span><span class="p">,</span> <span class="s1">&#39;count_num_param&#39;</span><span class="p">,</span>
<span class="s1">&#39;load_pretrained_weights&#39;</span>
<span class="p">]</span>
<div class="viewcode-block" id="save_checkpoint"><a class="viewcode-back" href="../../../pkg/utils.html#torchreid.utils.torchtools.save_checkpoint">[docs]</a><span class="k">def</span> <span class="nf">save_checkpoint</span><span class="p">(</span>
<span class="n">state</span><span class="p">,</span> <span class="n">save_dir</span><span class="p">,</span> <span class="n">is_best</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="n">remove_module_from_keys</span><span class="o">=</span><span class="kc">False</span>
<span class="p">):</span>
<span class="sa">r</span><span class="sd">&quot;&quot;&quot;Saves checkpoint.</span>
<span class="sd"> Args:</span>
<span class="sd"> state (dict): dictionary.</span>
<span class="sd"> save_dir (str): directory to save checkpoint.</span>
<span class="sd"> is_best (bool, optional): if True, this checkpoint will be copied and named</span>
<span class="sd"> ``model-best.pth.tar``. Default is False.</span>
<span class="sd"> remove_module_from_keys (bool, optional): whether to remove &quot;module.&quot;</span>
<span class="sd"> from layer names. Default is False.</span>
<span class="sd"> Examples::</span>
<span class="sd"> &gt;&gt;&gt; state = {</span>
<span class="sd"> &gt;&gt;&gt; &#39;state_dict&#39;: model.state_dict(),</span>
<span class="sd"> &gt;&gt;&gt; &#39;epoch&#39;: 10,</span>
<span class="sd"> &gt;&gt;&gt; &#39;rank1&#39;: 0.5,</span>
<span class="sd"> &gt;&gt;&gt; &#39;optimizer&#39;: optimizer.state_dict()</span>
<span class="sd"> &gt;&gt;&gt; }</span>
<span class="sd"> &gt;&gt;&gt; save_checkpoint(state, &#39;log/my_model&#39;)</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">mkdir_if_missing</span><span class="p">(</span><span class="n">save_dir</span><span class="p">)</span>
<span class="k">if</span> <span class="n">remove_module_from_keys</span><span class="p">:</span>
<span class="c1"># remove &#39;module.&#39; in state_dict&#39;s keys</span>
<span class="n">state_dict</span> <span class="o">=</span> <span class="n">state</span><span class="p">[</span><span class="s1">&#39;state_dict&#39;</span><span class="p">]</span>
<span class="n">new_state_dict</span> <span class="o">=</span> <span class="n">OrderedDict</span><span class="p">()</span>
<span class="k">for</span> <span class="n">k</span><span class="p">,</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">state_dict</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
<span class="k">if</span> <span class="n">k</span><span class="o">.</span><span class="n">startswith</span><span class="p">(</span><span class="s1">&#39;module.&#39;</span><span class="p">):</span>
<span class="n">k</span> <span class="o">=</span> <span class="n">k</span><span class="p">[</span><span class="mi">7</span><span class="p">:]</span>
<span class="n">new_state_dict</span><span class="p">[</span><span class="n">k</span><span class="p">]</span> <span class="o">=</span> <span class="n">v</span>
<span class="n">state</span><span class="p">[</span><span class="s1">&#39;state_dict&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">new_state_dict</span>
<span class="c1"># save</span>
<span class="n">epoch</span> <span class="o">=</span> <span class="n">state</span><span class="p">[</span><span class="s1">&#39;epoch&#39;</span><span class="p">]</span>
<span class="n">fpath</span> <span class="o">=</span> <span class="n">osp</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">save_dir</span><span class="p">,</span> <span class="s1">&#39;model.pth.tar-&#39;</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">epoch</span><span class="p">))</span>
<span class="n">torch</span><span class="o">.</span><span class="n">save</span><span class="p">(</span><span class="n">state</span><span class="p">,</span> <span class="n">fpath</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;Checkpoint saved to &quot;</span><span class="si">{}</span><span class="s1">&quot;&#39;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">fpath</span><span class="p">))</span>
<span class="k">if</span> <span class="n">is_best</span><span class="p">:</span>
<span class="n">shutil</span><span class="o">.</span><span class="n">copy</span><span class="p">(</span><span class="n">fpath</span><span class="p">,</span> <span class="n">osp</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">osp</span><span class="o">.</span><span class="n">dirname</span><span class="p">(</span><span class="n">fpath</span><span class="p">),</span> <span class="s1">&#39;model-best.pth.tar&#39;</span><span class="p">))</span></div>
<div class="viewcode-block" id="load_checkpoint"><a class="viewcode-back" href="../../../pkg/utils.html#torchreid.utils.torchtools.load_checkpoint">[docs]</a><span class="k">def</span> <span class="nf">load_checkpoint</span><span class="p">(</span><span class="n">fpath</span><span class="p">):</span>
<span class="sa">r</span><span class="sd">&quot;&quot;&quot;Loads checkpoint.</span>
<span class="sd"> ``UnicodeDecodeError`` can be well handled, which means</span>
<span class="sd"> python2-saved files can be read from python3.</span>
<span class="sd"> Args:</span>
<span class="sd"> fpath (str): path to checkpoint.</span>
<span class="sd"> Returns:</span>
<span class="sd"> dict</span>
<span class="sd"> Examples::</span>
<span class="sd"> &gt;&gt;&gt; from torchreid.utils import load_checkpoint</span>
<span class="sd"> &gt;&gt;&gt; fpath = &#39;log/my_model/model.pth.tar-10&#39;</span>
<span class="sd"> &gt;&gt;&gt; checkpoint = load_checkpoint(fpath)</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">if</span> <span class="n">fpath</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s1">&#39;File path is None&#39;</span><span class="p">)</span>
<span class="k">if</span> <span class="ow">not</span> <span class="n">osp</span><span class="o">.</span><span class="n">exists</span><span class="p">(</span><span class="n">fpath</span><span class="p">):</span>
<span class="k">raise</span> <span class="ne">FileNotFoundError</span><span class="p">(</span><span class="s1">&#39;File is not found at &quot;</span><span class="si">{}</span><span class="s1">&quot;&#39;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">fpath</span><span class="p">))</span>
<span class="n">map_location</span> <span class="o">=</span> <span class="kc">None</span> <span class="k">if</span> <span class="n">torch</span><span class="o">.</span><span class="n">cuda</span><span class="o">.</span><span class="n">is_available</span><span class="p">()</span> <span class="k">else</span> <span class="s1">&#39;cpu&#39;</span>
<span class="k">try</span><span class="p">:</span>
<span class="n">checkpoint</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="n">fpath</span><span class="p">,</span> <span class="n">map_location</span><span class="o">=</span><span class="n">map_location</span><span class="p">)</span>
<span class="k">except</span> <span class="ne">UnicodeDecodeError</span><span class="p">:</span>
<span class="n">pickle</span><span class="o">.</span><span class="n">load</span> <span class="o">=</span> <span class="n">partial</span><span class="p">(</span><span class="n">pickle</span><span class="o">.</span><span class="n">load</span><span class="p">,</span> <span class="n">encoding</span><span class="o">=</span><span class="s2">&quot;latin1&quot;</span><span class="p">)</span>
<span class="n">pickle</span><span class="o">.</span><span class="n">Unpickler</span> <span class="o">=</span> <span class="n">partial</span><span class="p">(</span><span class="n">pickle</span><span class="o">.</span><span class="n">Unpickler</span><span class="p">,</span> <span class="n">encoding</span><span class="o">=</span><span class="s2">&quot;latin1&quot;</span><span class="p">)</span>
<span class="n">checkpoint</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">load</span><span class="p">(</span>
<span class="n">fpath</span><span class="p">,</span> <span class="n">pickle_module</span><span class="o">=</span><span class="n">pickle</span><span class="p">,</span> <span class="n">map_location</span><span class="o">=</span><span class="n">map_location</span>
<span class="p">)</span>
<span class="k">except</span> <span class="ne">Exception</span><span class="p">:</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;Unable to load checkpoint from &quot;</span><span class="si">{}</span><span class="s1">&quot;&#39;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">fpath</span><span class="p">))</span>
<span class="k">raise</span>
<span class="k">return</span> <span class="n">checkpoint</span></div>
<div class="viewcode-block" id="resume_from_checkpoint"><a class="viewcode-back" href="../../../pkg/utils.html#torchreid.utils.torchtools.resume_from_checkpoint">[docs]</a><span class="k">def</span> <span class="nf">resume_from_checkpoint</span><span class="p">(</span><span class="n">fpath</span><span class="p">,</span> <span class="n">model</span><span class="p">,</span> <span class="n">optimizer</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">scheduler</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="sa">r</span><span class="sd">&quot;&quot;&quot;Resumes training from a checkpoint.</span>
<span class="sd"> This will load (1) model weights and (2) ``state_dict``</span>
<span class="sd"> of optimizer if ``optimizer`` is not None.</span>
<span class="sd"> Args:</span>
<span class="sd"> fpath (str): path to checkpoint.</span>
<span class="sd"> model (nn.Module): model.</span>
<span class="sd"> optimizer (Optimizer, optional): an Optimizer.</span>
<span class="sd"> scheduler (LRScheduler, optional): an LRScheduler.</span>
<span class="sd"> Returns:</span>
<span class="sd"> int: start_epoch.</span>
<span class="sd"> Examples::</span>
<span class="sd"> &gt;&gt;&gt; from torchreid.utils import resume_from_checkpoint</span>
<span class="sd"> &gt;&gt;&gt; fpath = &#39;log/my_model/model.pth.tar-10&#39;</span>
<span class="sd"> &gt;&gt;&gt; start_epoch = resume_from_checkpoint(</span>
<span class="sd"> &gt;&gt;&gt; fpath, model, optimizer, scheduler</span>
<span class="sd"> &gt;&gt;&gt; )</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;Loading checkpoint from &quot;</span><span class="si">{}</span><span class="s1">&quot;&#39;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">fpath</span><span class="p">))</span>
<span class="n">checkpoint</span> <span class="o">=</span> <span class="n">load_checkpoint</span><span class="p">(</span><span class="n">fpath</span><span class="p">)</span>
<span class="n">model</span><span class="o">.</span><span class="n">load_state_dict</span><span class="p">(</span><span class="n">checkpoint</span><span class="p">[</span><span class="s1">&#39;state_dict&#39;</span><span class="p">])</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;Loaded model weights&#39;</span><span class="p">)</span>
<span class="k">if</span> <span class="n">optimizer</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="ow">and</span> <span class="s1">&#39;optimizer&#39;</span> <span class="ow">in</span> <span class="n">checkpoint</span><span class="o">.</span><span class="n">keys</span><span class="p">():</span>
<span class="n">optimizer</span><span class="o">.</span><span class="n">load_state_dict</span><span class="p">(</span><span class="n">checkpoint</span><span class="p">[</span><span class="s1">&#39;optimizer&#39;</span><span class="p">])</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;Loaded optimizer&#39;</span><span class="p">)</span>
<span class="k">if</span> <span class="n">scheduler</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="ow">and</span> <span class="s1">&#39;scheduler&#39;</span> <span class="ow">in</span> <span class="n">checkpoint</span><span class="o">.</span><span class="n">keys</span><span class="p">():</span>
<span class="n">scheduler</span><span class="o">.</span><span class="n">load_state_dict</span><span class="p">(</span><span class="n">checkpoint</span><span class="p">[</span><span class="s1">&#39;scheduler&#39;</span><span class="p">])</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;Loaded scheduler&#39;</span><span class="p">)</span>
<span class="n">start_epoch</span> <span class="o">=</span> <span class="n">checkpoint</span><span class="p">[</span><span class="s1">&#39;epoch&#39;</span><span class="p">]</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;Last epoch = </span><span class="si">{}</span><span class="s1">&#39;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">start_epoch</span><span class="p">))</span>
<span class="k">if</span> <span class="s1">&#39;rank1&#39;</span> <span class="ow">in</span> <span class="n">checkpoint</span><span class="o">.</span><span class="n">keys</span><span class="p">():</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;Last rank1 = </span><span class="si">{:.1%}</span><span class="s1">&#39;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">checkpoint</span><span class="p">[</span><span class="s1">&#39;rank1&#39;</span><span class="p">]))</span>
<span class="k">return</span> <span class="n">start_epoch</span></div>
<span class="k">def</span> <span class="nf">adjust_learning_rate</span><span class="p">(</span>
<span class="n">optimizer</span><span class="p">,</span>
<span class="n">base_lr</span><span class="p">,</span>
<span class="n">epoch</span><span class="p">,</span>
<span class="n">stepsize</span><span class="o">=</span><span class="mi">20</span><span class="p">,</span>
<span class="n">gamma</span><span class="o">=</span><span class="mf">0.1</span><span class="p">,</span>
<span class="n">linear_decay</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">final_lr</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span>
<span class="n">max_epoch</span><span class="o">=</span><span class="mi">100</span>
<span class="p">):</span>
<span class="sa">r</span><span class="sd">&quot;&quot;&quot;Adjusts learning rate.</span>
<span class="sd"> Deprecated.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">if</span> <span class="n">linear_decay</span><span class="p">:</span>
<span class="c1"># linearly decay learning rate from base_lr to final_lr</span>
<span class="n">frac_done</span> <span class="o">=</span> <span class="n">epoch</span> <span class="o">/</span> <span class="n">max_epoch</span>
<span class="n">lr</span> <span class="o">=</span> <span class="n">frac_done</span><span class="o">*</span><span class="n">final_lr</span> <span class="o">+</span> <span class="p">(</span><span class="mf">1.</span><span class="o">-</span><span class="n">frac_done</span><span class="p">)</span> <span class="o">*</span> <span class="n">base_lr</span>
<span class="k">else</span><span class="p">:</span>
<span class="c1"># decay learning rate by gamma for every stepsize</span>
<span class="n">lr</span> <span class="o">=</span> <span class="n">base_lr</span> <span class="o">*</span> <span class="p">(</span><span class="n">gamma</span><span class="o">**</span><span class="p">(</span><span class="n">epoch</span> <span class="o">//</span> <span class="n">stepsize</span><span class="p">))</span>
<span class="k">for</span> <span class="n">param_group</span> <span class="ow">in</span> <span class="n">optimizer</span><span class="o">.</span><span class="n">param_groups</span><span class="p">:</span>
<span class="n">param_group</span><span class="p">[</span><span class="s1">&#39;lr&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">lr</span>
<span class="k">def</span> <span class="nf">set_bn_to_eval</span><span class="p">(</span><span class="n">m</span><span class="p">):</span>
<span class="sa">r</span><span class="sd">&quot;&quot;&quot;Sets BatchNorm layers to eval mode.&quot;&quot;&quot;</span>
<span class="c1"># 1. no update for running mean and var</span>
<span class="c1"># 2. scale and shift parameters are still trainable</span>
<span class="n">classname</span> <span class="o">=</span> <span class="n">m</span><span class="o">.</span><span class="vm">__class__</span><span class="o">.</span><span class="vm">__name__</span>
<span class="k">if</span> <span class="n">classname</span><span class="o">.</span><span class="n">find</span><span class="p">(</span><span class="s1">&#39;BatchNorm&#39;</span><span class="p">)</span> <span class="o">!=</span> <span class="o">-</span><span class="mi">1</span><span class="p">:</span>
<span class="n">m</span><span class="o">.</span><span class="n">eval</span><span class="p">()</span>
<div class="viewcode-block" id="open_all_layers"><a class="viewcode-back" href="../../../pkg/utils.html#torchreid.utils.torchtools.open_all_layers">[docs]</a><span class="k">def</span> <span class="nf">open_all_layers</span><span class="p">(</span><span class="n">model</span><span class="p">):</span>
<span class="sa">r</span><span class="sd">&quot;&quot;&quot;Opens all layers in model for training.</span>
<span class="sd"> Examples::</span>
<span class="sd"> &gt;&gt;&gt; from torchreid.utils import open_all_layers</span>
<span class="sd"> &gt;&gt;&gt; open_all_layers(model)</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">model</span><span class="o">.</span><span class="n">train</span><span class="p">()</span>
<span class="k">for</span> <span class="n">p</span> <span class="ow">in</span> <span class="n">model</span><span class="o">.</span><span class="n">parameters</span><span class="p">():</span>
<span class="n">p</span><span class="o">.</span><span class="n">requires_grad</span> <span class="o">=</span> <span class="kc">True</span></div>
<div class="viewcode-block" id="open_specified_layers"><a class="viewcode-back" href="../../../pkg/utils.html#torchreid.utils.torchtools.open_specified_layers">[docs]</a><span class="k">def</span> <span class="nf">open_specified_layers</span><span class="p">(</span><span class="n">model</span><span class="p">,</span> <span class="n">open_layers</span><span class="p">):</span>
<span class="sa">r</span><span class="sd">&quot;&quot;&quot;Opens specified layers in model for training while keeping</span>
<span class="sd"> other layers frozen.</span>
<span class="sd"> Args:</span>
<span class="sd"> model (nn.Module): neural net model.</span>
<span class="sd"> open_layers (str or list): layers open for training.</span>
<span class="sd"> Examples::</span>
<span class="sd"> &gt;&gt;&gt; from torchreid.utils import open_specified_layers</span>
<span class="sd"> &gt;&gt;&gt; # Only model.classifier will be updated.</span>
<span class="sd"> &gt;&gt;&gt; open_layers = &#39;classifier&#39;</span>
<span class="sd"> &gt;&gt;&gt; open_specified_layers(model, open_layers)</span>
<span class="sd"> &gt;&gt;&gt; # Only model.fc and model.classifier will be updated.</span>
<span class="sd"> &gt;&gt;&gt; open_layers = [&#39;fc&#39;, &#39;classifier&#39;]</span>
<span class="sd"> &gt;&gt;&gt; open_specified_layers(model, open_layers)</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">model</span><span class="p">,</span> <span class="n">nn</span><span class="o">.</span><span class="n">DataParallel</span><span class="p">):</span>
<span class="n">model</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">module</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">open_layers</span><span class="p">,</span> <span class="nb">str</span><span class="p">):</span>
<span class="n">open_layers</span> <span class="o">=</span> <span class="p">[</span><span class="n">open_layers</span><span class="p">]</span>
<span class="k">for</span> <span class="n">layer</span> <span class="ow">in</span> <span class="n">open_layers</span><span class="p">:</span>
<span class="k">assert</span> <span class="nb">hasattr</span><span class="p">(</span>
<span class="n">model</span><span class="p">,</span> <span class="n">layer</span>
<span class="p">),</span> <span class="s1">&#39;&quot;</span><span class="si">{}</span><span class="s1">&quot; is not an attribute of the model, please provide the correct name&#39;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span>
<span class="n">layer</span>
<span class="p">)</span>
<span class="k">for</span> <span class="n">name</span><span class="p">,</span> <span class="n">module</span> <span class="ow">in</span> <span class="n">model</span><span class="o">.</span><span class="n">named_children</span><span class="p">():</span>
<span class="k">if</span> <span class="n">name</span> <span class="ow">in</span> <span class="n">open_layers</span><span class="p">:</span>
<span class="n">module</span><span class="o">.</span><span class="n">train</span><span class="p">()</span>
<span class="k">for</span> <span class="n">p</span> <span class="ow">in</span> <span class="n">module</span><span class="o">.</span><span class="n">parameters</span><span class="p">():</span>
<span class="n">p</span><span class="o">.</span><span class="n">requires_grad</span> <span class="o">=</span> <span class="kc">True</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">module</span><span class="o">.</span><span class="n">eval</span><span class="p">()</span>
<span class="k">for</span> <span class="n">p</span> <span class="ow">in</span> <span class="n">module</span><span class="o">.</span><span class="n">parameters</span><span class="p">():</span>
<span class="n">p</span><span class="o">.</span><span class="n">requires_grad</span> <span class="o">=</span> <span class="kc">False</span></div>
<div class="viewcode-block" id="count_num_param"><a class="viewcode-back" href="../../../pkg/utils.html#torchreid.utils.torchtools.count_num_param">[docs]</a><span class="k">def</span> <span class="nf">count_num_param</span><span class="p">(</span><span class="n">model</span><span class="p">):</span>
<span class="sa">r</span><span class="sd">&quot;&quot;&quot;Counts number of parameters in a model while ignoring ``self.classifier``.</span>
<span class="sd"> Args:</span>
<span class="sd"> model (nn.Module): network model.</span>
<span class="sd"> Examples::</span>
<span class="sd"> &gt;&gt;&gt; from torchreid.utils import count_num_param</span>
<span class="sd"> &gt;&gt;&gt; model_size = count_num_param(model)</span>
<span class="sd"> .. warning::</span>
<span class="sd"> </span>
<span class="sd"> This method is deprecated in favor of</span>
<span class="sd"> ``torchreid.utils.compute_model_complexity``.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">warnings</span><span class="o">.</span><span class="n">warn</span><span class="p">(</span>
<span class="s1">&#39;This method is deprecated and will be removed in the future.&#39;</span>
<span class="p">)</span>
<span class="n">num_param</span> <span class="o">=</span> <span class="nb">sum</span><span class="p">(</span><span class="n">p</span><span class="o">.</span><span class="n">numel</span><span class="p">()</span> <span class="k">for</span> <span class="n">p</span> <span class="ow">in</span> <span class="n">model</span><span class="o">.</span><span class="n">parameters</span><span class="p">())</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">model</span><span class="p">,</span> <span class="n">nn</span><span class="o">.</span><span class="n">DataParallel</span><span class="p">):</span>
<span class="n">model</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">module</span>
<span class="k">if</span> <span class="nb">hasattr</span><span class="p">(</span><span class="n">model</span><span class="p">,</span>
<span class="s1">&#39;classifier&#39;</span><span class="p">)</span> <span class="ow">and</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">model</span><span class="o">.</span><span class="n">classifier</span><span class="p">,</span> <span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span>
<span class="c1"># we ignore the classifier because it is unused at test time</span>
<span class="n">num_param</span> <span class="o">-=</span> <span class="nb">sum</span><span class="p">(</span><span class="n">p</span><span class="o">.</span><span class="n">numel</span><span class="p">()</span> <span class="k">for</span> <span class="n">p</span> <span class="ow">in</span> <span class="n">model</span><span class="o">.</span><span class="n">classifier</span><span class="o">.</span><span class="n">parameters</span><span class="p">())</span>
<span class="k">return</span> <span class="n">num_param</span></div>
<div class="viewcode-block" id="load_pretrained_weights"><a class="viewcode-back" href="../../../pkg/utils.html#torchreid.utils.torchtools.load_pretrained_weights">[docs]</a><span class="k">def</span> <span class="nf">load_pretrained_weights</span><span class="p">(</span><span class="n">model</span><span class="p">,</span> <span class="n">weight_path</span><span class="p">):</span>
<span class="sa">r</span><span class="sd">&quot;&quot;&quot;Loads pretrianed weights to model.</span>
<span class="sd"> Features::</span>
<span class="sd"> - Incompatible layers (unmatched in name or size) will be ignored.</span>
<span class="sd"> - Can automatically deal with keys containing &quot;module.&quot;.</span>
<span class="sd"> Args:</span>
<span class="sd"> model (nn.Module): network model.</span>
<span class="sd"> weight_path (str): path to pretrained weights.</span>
<span class="sd"> Examples::</span>
<span class="sd"> &gt;&gt;&gt; from torchreid.utils import load_pretrained_weights</span>
<span class="sd"> &gt;&gt;&gt; weight_path = &#39;log/my_model/model-best.pth.tar&#39;</span>
<span class="sd"> &gt;&gt;&gt; load_pretrained_weights(model, weight_path)</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">checkpoint</span> <span class="o">=</span> <span class="n">load_checkpoint</span><span class="p">(</span><span class="n">weight_path</span><span class="p">)</span>
<span class="k">if</span> <span class="s1">&#39;state_dict&#39;</span> <span class="ow">in</span> <span class="n">checkpoint</span><span class="p">:</span>
<span class="n">state_dict</span> <span class="o">=</span> <span class="n">checkpoint</span><span class="p">[</span><span class="s1">&#39;state_dict&#39;</span><span class="p">]</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">state_dict</span> <span class="o">=</span> <span class="n">checkpoint</span>
<span class="n">model_dict</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">state_dict</span><span class="p">()</span>
<span class="n">new_state_dict</span> <span class="o">=</span> <span class="n">OrderedDict</span><span class="p">()</span>
<span class="n">matched_layers</span><span class="p">,</span> <span class="n">discarded_layers</span> <span class="o">=</span> <span class="p">[],</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">k</span><span class="p">,</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">state_dict</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
<span class="k">if</span> <span class="n">k</span><span class="o">.</span><span class="n">startswith</span><span class="p">(</span><span class="s1">&#39;module.&#39;</span><span class="p">):</span>
<span class="n">k</span> <span class="o">=</span> <span class="n">k</span><span class="p">[</span><span class="mi">7</span><span class="p">:]</span> <span class="c1"># discard module.</span>
<span class="k">if</span> <span class="n">k</span> <span class="ow">in</span> <span class="n">model_dict</span> <span class="ow">and</span> <span class="n">model_dict</span><span class="p">[</span><span class="n">k</span><span class="p">]</span><span class="o">.</span><span class="n">size</span><span class="p">()</span> <span class="o">==</span> <span class="n">v</span><span class="o">.</span><span class="n">size</span><span class="p">():</span>
<span class="n">new_state_dict</span><span class="p">[</span><span class="n">k</span><span class="p">]</span> <span class="o">=</span> <span class="n">v</span>
<span class="n">matched_layers</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">k</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">discarded_layers</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">k</span><span class="p">)</span>
<span class="n">model_dict</span><span class="o">.</span><span class="n">update</span><span class="p">(</span><span class="n">new_state_dict</span><span class="p">)</span>
<span class="n">model</span><span class="o">.</span><span class="n">load_state_dict</span><span class="p">(</span><span class="n">model_dict</span><span class="p">)</span>
<span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">matched_layers</span><span class="p">)</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span>
<span class="n">warnings</span><span class="o">.</span><span class="n">warn</span><span class="p">(</span>
<span class="s1">&#39;The pretrained weights &quot;</span><span class="si">{}</span><span class="s1">&quot; cannot be loaded, &#39;</span>
<span class="s1">&#39;please check the key names manually &#39;</span>
<span class="s1">&#39;(** ignored and continue **)&#39;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">weight_path</span><span class="p">)</span>
<span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="nb">print</span><span class="p">(</span>
<span class="s1">&#39;Successfully loaded pretrained weights from &quot;</span><span class="si">{}</span><span class="s1">&quot;&#39;</span><span class="o">.</span>
<span class="nb">format</span><span class="p">(</span><span class="n">weight_path</span><span class="p">)</span>
<span class="p">)</span>
<span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">discarded_layers</span><span class="p">)</span> <span class="o">&gt;</span> <span class="mi">0</span><span class="p">:</span>
<span class="nb">print</span><span class="p">(</span>
<span class="s1">&#39;** The following layers are discarded &#39;</span>
<span class="s1">&#39;due to unmatched keys or layer size: </span><span class="si">{}</span><span class="s1">&#39;</span><span class="o">.</span>
<span class="nb">format</span><span class="p">(</span><span class="n">discarded_layers</span><span class="p">)</span>
<span class="p">)</span></div>
</pre></div>
</div>
</div>
<footer>
<hr/>
<div role="contentinfo">
<p>
&copy; Copyright 2019, Kaiyang Zhou
</p>
</div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a
<a href="https://github.com/rtfd/sphinx_rtd_theme">theme</a>
provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
</body>
</html>