deep-person-reid/train_img_model_xent_htri.py

295 lines
12 KiB
Python

from __future__ import print_function, absolute_import
import os
import sys
import time
import datetime
import argparse
import os.path as osp
import numpy as np
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
from torch.utils.data import DataLoader
from torch.optim import lr_scheduler
import data_manager
from dataset_loader import ImageDataset
import transforms as T
import models
from losses import CrossEntropyLabelSmooth, TripletLoss, DeepSupervision
from utils import AverageMeter, Logger, save_checkpoint
from eval_metrics import evaluate
from samplers import RandomIdentitySampler
from optimizers import init_optim
parser = argparse.ArgumentParser(description='Train image model with cross entropy loss and hard triplet loss')
# Datasets
parser.add_argument('--root', type=str, default='data', help="root path to data directory")
parser.add_argument('-d', '--dataset', type=str, default='market1501',
choices=data_manager.get_names())
parser.add_argument('-j', '--workers', default=4, type=int,
help="number of data loading workers (default: 4)")
parser.add_argument('--height', type=int, default=256,
help="height of an image (default: 256)")
parser.add_argument('--width', type=int, default=128,
help="width of an image (default: 128)")
parser.add_argument('--split-id', type=int, default=0, help="split index")
# CUHK03-specific setting
parser.add_argument('--cuhk03-labeled', action='store_true',
help="whether to use labeled images, if false, detected images are used (default: False)")
parser.add_argument('--cuhk03-classic-split', action='store_true',
help="whether to use classic split by Li et al. CVPR'14 (default: False)")
parser.add_argument('--use-metric-cuhk03', action='store_true',
help="whether to use cuhk03-metric (default: False)")
# Optimization options
parser.add_argument('--optim', type=str, default='adam', help="optimization algorithm (see optimizers.py)")
parser.add_argument('--max-epoch', default=180, type=int,
help="maximum epochs to run")
parser.add_argument('--start-epoch', default=0, type=int,
help="manual epoch number (useful on restarts)")
parser.add_argument('--train-batch', default=32, type=int,
help="train batch size")
parser.add_argument('--test-batch', default=32, type=int, help="test batch size")
parser.add_argument('--lr', '--learning-rate', default=0.0003, type=float,
help="initial learning rate")
parser.add_argument('--stepsize', default=60, type=int,
help="stepsize to decay learning rate (>0 means this is enabled)")
parser.add_argument('--gamma', default=0.1, type=float,
help="learning rate decay")
parser.add_argument('--weight-decay', default=5e-04, type=float,
help="weight decay (default: 5e-04)")
parser.add_argument('--margin', type=float, default=0.3, help="margin for triplet loss")
parser.add_argument('--num-instances', type=int, default=4,
help="number of instances per identity")
parser.add_argument('--htri-only', action='store_true', default=False,
help="if this is True, only htri loss is used in training")
# Architecture
parser.add_argument('-a', '--arch', type=str, default='resnet50', choices=models.get_names())
# Miscs
parser.add_argument('--print-freq', type=int, default=10, help="print frequency")
parser.add_argument('--seed', type=int, default=1, help="manual seed")
parser.add_argument('--resume', type=str, default='', metavar='PATH')
parser.add_argument('--evaluate', action='store_true', help="evaluation only")
parser.add_argument('--eval-step', type=int, default=-1,
help="run evaluation for every N epochs (set to -1 to test after training)")
parser.add_argument('--save-dir', type=str, default='log')
parser.add_argument('--use-cpu', action='store_true', help="use cpu")
parser.add_argument('--gpu-devices', default='0', type=str, help='gpu device ids for CUDA_VISIBLE_DEVICES')
args = parser.parse_args()
def main():
torch.manual_seed(args.seed)
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_devices
use_gpu = torch.cuda.is_available()
if args.use_cpu: use_gpu = False
if not args.evaluate:
sys.stdout = Logger(osp.join(args.save_dir, 'log_train.txt'))
else:
sys.stdout = Logger(osp.join(args.save_dir, 'log_test.txt'))
print("==========\nArgs:{}\n==========".format(args))
if use_gpu:
print("Currently using GPU {}".format(args.gpu_devices))
cudnn.benchmark = True
torch.cuda.manual_seed_all(args.seed)
else:
print("Currently using CPU (GPU is highly recommended)")
print("Initializing dataset {}".format(args.dataset))
dataset = data_manager.init_dataset(
root=args.root, name=args.dataset, split_id=args.split_id,
cuhk03_labeled=args.cuhk03_labeled, cuhk03_classic_split=args.cuhk03_classic_split,
)
transform_train = T.Compose([
T.Random2DTranslation(args.height, args.width),
T.RandomHorizontalFlip(),
T.ToTensor(),
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
transform_test = T.Compose([
T.Resize((args.height, args.width)),
T.ToTensor(),
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
pin_memory = True if use_gpu else False
trainloader = DataLoader(
ImageDataset(dataset.train, transform=transform_train),
sampler=RandomIdentitySampler(dataset.train, num_instances=args.num_instances),
batch_size=args.train_batch, num_workers=args.workers,
pin_memory=pin_memory, drop_last=True,
)
queryloader = DataLoader(
ImageDataset(dataset.query, transform=transform_test),
batch_size=args.test_batch, shuffle=False, num_workers=args.workers,
pin_memory=pin_memory, drop_last=False,
)
galleryloader = DataLoader(
ImageDataset(dataset.gallery, transform=transform_test),
batch_size=args.test_batch, shuffle=False, num_workers=args.workers,
pin_memory=pin_memory, drop_last=False,
)
print("Initializing model: {}".format(args.arch))
model = models.init_model(name=args.arch, num_classes=dataset.num_train_pids, loss={'xent', 'htri'})
print("Model size: {:.5f}M".format(sum(p.numel() for p in model.parameters())/1000000.0))
criterion_xent = CrossEntropyLabelSmooth(num_classes=dataset.num_train_pids, use_gpu=use_gpu)
criterion_htri = TripletLoss(margin=args.margin)
optimizer = init_optim(args.optim, model.parameters(), args.lr, args.weight_decay)
if args.stepsize > 0:
scheduler = lr_scheduler.StepLR(optimizer, step_size=args.stepsize, gamma=args.gamma)
start_epoch = args.start_epoch
if args.resume:
print("Loading checkpoint from '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
model.load_state_dict(checkpoint['state_dict'])
start_epoch = checkpoint['epoch']
if use_gpu:
model = nn.DataParallel(model).cuda()
if args.evaluate:
print("Evaluate only")
test(model, queryloader, galleryloader, use_gpu)
return
start_time = time.time()
train_time = 0
best_rank1 = -np.inf
best_epoch = 0
print("==> Start training")
for epoch in range(start_epoch, args.max_epoch):
start_train_time = time.time()
train(epoch, model, criterion_xent, criterion_htri, optimizer, trainloader, use_gpu)
train_time += round(time.time() - start_train_time)
if args.stepsize > 0: scheduler.step()
if args.eval_step > 0 and (epoch+1) % args.eval_step == 0 or (epoch+1) == args.max_epoch:
print("==> Test")
rank1 = test(model, queryloader, galleryloader, use_gpu)
is_best = rank1 > best_rank1
if is_best:
best_rank1 = rank1
best_epoch = epoch + 1
if use_gpu:
state_dict = model.module.state_dict()
else:
state_dict = model.state_dict()
save_checkpoint({
'state_dict': state_dict,
'rank1': rank1,
'epoch': epoch,
}, is_best, osp.join(args.save_dir, 'checkpoint_ep' + str(epoch+1) + '.pth.tar'))
print("==> Best Rank-1 {:.1%}, achieved at epoch {}".format(best_rank1, best_epoch))
elapsed = round(time.time() - start_time)
elapsed = str(datetime.timedelta(seconds=elapsed))
train_time = str(datetime.timedelta(seconds=train_time))
print("Finished. Total elapsed time (h:m:s): {}. Training time (h:m:s): {}.".format(elapsed, train_time))
def train(epoch, model, criterion_xent, criterion_htri, optimizer, trainloader, use_gpu):
model.train()
losses = AverageMeter()
for batch_idx, (imgs, pids, _) in enumerate(trainloader):
if use_gpu:
imgs, pids = imgs.cuda(), pids.cuda()
outputs, features = model(imgs)
if args.htri_only:
if isinstance(features, tuple):
loss = DeepSupervision(criterion_htri, features, pids)
else:
loss = criterion_htri(features, pids)
else:
if isinstance(outputs, tuple):
xent_loss = DeepSupervision(criterion_xent, outputs, pids)
else:
xent_loss = criterion_xent(outputs, pids)
if isinstance(features, tuple):
htri_loss = DeepSupervision(criterion_htri, features, pids)
else:
htri_loss = criterion_htri(features, pids)
loss = xent_loss + htri_loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
losses.update(loss.item(), pids.size(0))
if (batch_idx+1) % args.print_freq == 0:
print("Epoch {}/{}\t Batch {}/{}\t Loss {:.6f} ({:.6f})".format(
epoch+1, args.max_epoch, batch_idx+1, len(trainloader), losses.val, losses.avg
))
def test(model, queryloader, galleryloader, use_gpu, ranks=[1, 5, 10, 20]):
model.eval()
with torch.no_grad():
qf, q_pids, q_camids = [], [], []
for batch_idx, (imgs, pids, camids) in enumerate(queryloader):
if use_gpu:
imgs = imgs.cuda()
features = model(imgs)
features = features.data.cpu()
qf.append(features)
q_pids.extend(pids)
q_camids.extend(camids)
qf = torch.cat(qf, 0)
q_pids = np.asarray(q_pids)
q_camids = np.asarray(q_camids)
print("Extracted features for query set, obtained {}-by-{} matrix".format(qf.size(0), qf.size(1)))
gf, g_pids, g_camids = [], [], []
for batch_idx, (imgs, pids, camids) in enumerate(galleryloader):
if use_gpu:
imgs = imgs.cuda()
features = model(imgs)
features = features.data.cpu()
gf.append(features)
g_pids.extend(pids)
g_camids.extend(camids)
gf = torch.cat(gf, 0)
g_pids = np.asarray(g_pids)
g_camids = np.asarray(g_camids)
print("Extracted features for gallery set, obtained {}-by-{} matrix".format(gf.size(0), gf.size(1)))
print("Computing distance matrix")
m, n = qf.size(0), gf.size(0)
distmat = torch.pow(qf, 2).sum(dim=1, keepdim=True).expand(m, n) + \
torch.pow(gf, 2).sum(dim=1, keepdim=True).expand(n, m).t()
distmat.addmm_(1, -2, qf, gf.t())
distmat = distmat.numpy()
print("Computing CMC and mAP")
cmc, mAP = evaluate(distmat, q_pids, g_pids, q_camids, g_camids, use_metric_cuhk03=args.use_metric_cuhk03)
print("Results ----------")
print("mAP: {:.1%}".format(mAP))
print("CMC curve")
for r in ranks:
print("Rank-{:<3}: {:.1%}".format(r, cmc[r-1]))
print("------------------")
return cmc[0]
if __name__ == '__main__':
main()