107 lines
4.2 KiB
Python
107 lines
4.2 KiB
Python
from __future__ import print_function, absolute_import
|
|
|
|
import os
|
|
import glob
|
|
import re
|
|
import sys
|
|
import urllib
|
|
import tarfile
|
|
import zipfile
|
|
import os.path as osp
|
|
from scipy.io import loadmat
|
|
import numpy as np
|
|
import h5py
|
|
from scipy.misc import imsave
|
|
|
|
from .base import BaseImgDataset
|
|
|
|
|
|
class MSMT17(BaseImgDataset):
|
|
"""
|
|
MSMT17
|
|
|
|
Reference:
|
|
Wei et al. Person Transfer GAN to Bridge Domain Gap for Person Re-Identification. CVPR 2018.
|
|
|
|
URL: http://www.pkuvmc.com/publications/msmt17.html
|
|
|
|
Dataset statistics:
|
|
# identities: 4101
|
|
# images: 32621 (train) + 11659 (query) + 82161 (gallery)
|
|
# cameras: 15
|
|
"""
|
|
dataset_dir = 'msmt17'
|
|
|
|
def __init__(self, root='data', verbose=True, use_lmdb=False, **kwargs):
|
|
super(MSMT17, self).__init__()
|
|
self.dataset_dir = osp.join(root, self.dataset_dir)
|
|
self.train_dir = osp.join(self.dataset_dir, 'MSMT17_V1/train')
|
|
self.test_dir = osp.join(self.dataset_dir, 'MSMT17_V1/test')
|
|
self.list_train_path = osp.join(self.dataset_dir, 'MSMT17_V1/list_train.txt')
|
|
self.list_val_path = osp.join(self.dataset_dir, 'MSMT17_V1/list_val.txt')
|
|
self.list_query_path = osp.join(self.dataset_dir, 'MSMT17_V1/list_query.txt')
|
|
self.list_gallery_path = osp.join(self.dataset_dir, 'MSMT17_V1/list_gallery.txt')
|
|
|
|
self._check_before_run()
|
|
train, num_train_pids, num_train_imgs = self._process_dir(self.train_dir, self.list_train_path)
|
|
#val, num_val_pids, num_val_imgs = self._process_dir(self.train_dir, self.list_val_path)
|
|
query, num_query_pids, num_query_imgs = self._process_dir(self.test_dir, self.list_query_path)
|
|
gallery, num_gallery_pids, num_gallery_imgs = self._process_dir(self.test_dir, self.list_gallery_path)
|
|
|
|
#train += val
|
|
#num_train_imgs += num_val_imgs
|
|
|
|
num_total_pids = num_train_pids + num_query_pids
|
|
num_total_imgs = num_train_imgs + num_query_imgs + num_gallery_imgs
|
|
|
|
if verbose:
|
|
print("=> MSMT17 loaded")
|
|
print("Dataset statistics:")
|
|
print(" ------------------------------")
|
|
print(" subset | # ids | # images")
|
|
print(" ------------------------------")
|
|
print(" train | {:5d} | {:8d}".format(num_train_pids, num_train_imgs))
|
|
print(" query | {:5d} | {:8d}".format(num_query_pids, num_query_imgs))
|
|
print(" gallery | {:5d} | {:8d}".format(num_gallery_pids, num_gallery_imgs))
|
|
print(" ------------------------------")
|
|
print(" total | {:5d} | {:8d}".format(num_total_pids, num_total_imgs))
|
|
print(" ------------------------------")
|
|
|
|
self.train = train
|
|
self.query = query
|
|
self.gallery = gallery
|
|
|
|
self.num_train_pids = num_train_pids
|
|
self.num_query_pids = num_query_pids
|
|
self.num_gallery_pids = num_gallery_pids
|
|
|
|
if use_lmdb:
|
|
self.generate_lmdb()
|
|
|
|
def _check_before_run(self):
|
|
"""Check if all files are available before going deeper"""
|
|
if not osp.exists(self.dataset_dir):
|
|
raise RuntimeError("'{}' is not available".format(self.dataset_dir))
|
|
if not osp.exists(self.train_dir):
|
|
raise RuntimeError("'{}' is not available".format(self.train_dir))
|
|
if not osp.exists(self.test_dir):
|
|
raise RuntimeError("'{}' is not available".format(self.test_dir))
|
|
|
|
def _process_dir(self, dir_path, list_path):
|
|
with open(list_path, 'r') as txt:
|
|
lines = txt.readlines()
|
|
dataset = []
|
|
pid_container = set()
|
|
for img_idx, img_info in enumerate(lines):
|
|
img_path, pid = img_info.split(' ')
|
|
pid = int(pid) # no need to relabel
|
|
camid = int(img_path.split('_')[2])
|
|
img_path = osp.join(dir_path, img_path)
|
|
dataset.append((img_path, pid, camid))
|
|
pid_container.add(pid)
|
|
num_imgs = len(dataset)
|
|
num_pids = len(pid_container)
|
|
# check if pid starts from 0 and increments with 1
|
|
for idx, pid in enumerate(pid_container):
|
|
assert idx == pid, "See code comment for explanation"
|
|
return dataset, num_pids, num_imgs |