mirror of
https://github.com/facebookresearch/deit.git
synced 2025-06-03 14:52:20 +08:00
add cait models and README
This commit is contained in:
parent
7e0acbca7b
commit
4fcfe17ec3
64
README_cait.md
Normal file
64
README_cait.md
Normal file
@ -0,0 +1,64 @@
|
||||
|
||||
# CaiT: Going deeper with Image Transformers
|
||||
|
||||
This repository contains PyTorch evaluation code, training code and pretrained models for DeiT (Data-Efficient Image Transformers) and CaiT (Going deeper with Image Transformers). All models are trained during 400 epochs.
|
||||
|
||||
CaiT obtain competitive tradeoffs in terms of flops / precision:
|
||||
|
||||
<p align="center">
|
||||
<img width="600" height="600" src=".github/cait.png">
|
||||
</p>
|
||||
|
||||
For details see [Going deeper with Image Transformers](https://arxiv.org/abs/2103.17239) by Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles, Gabriel Synnaeve and Hervé Jégou
|
||||
|
||||
If you use this code for a paper please cite:
|
||||
|
||||
```
|
||||
@article{touvron2021cait,
|
||||
title={Going deeper with Image Transformers},
|
||||
author={Hugo Touvron and Matthieu Cord and Alexandre Sablayrolles and Gabriel Synnaeve and Herv\'e J\'egou},
|
||||
journal={arXiv preprint arXiv:2103.17239},
|
||||
year={2021}
|
||||
}
|
||||
```
|
||||
|
||||
# Model Zoo
|
||||
|
||||
We provide baseline CaiT models pretrained on ImageNet1k 2012 only, using the distilled version of our method.
|
||||
|
||||
| name | res | acc@1 | FLOPs| #params | url |
|
||||
| --- | --- | --- | --- | --- | --- |
|
||||
| S24 | 83.5 | 224 |9.4B| 47M| [model](https://dl.fbaipublicfiles.com/deit/S24_224.pth) |
|
||||
| XS24| 84.1 | 384 | 19.3B |27M | [model](https://dl.fbaipublicfiles.com/deit/XS24_384.pth) |
|
||||
| S24 | 85.1 | 384 | 32.2B |47M | [model](https://dl.fbaipublicfiles.com/deit/S24_384.pth) |
|
||||
| S36 | 85.4 | 384 | 48.0B| 68M| [model](https://dl.fbaipublicfiles.com/deit/S36_384.pth) |
|
||||
| M36 | 86.1 | 384 | 173.3B| 271M | [model](https://dl.fbaipublicfiles.com/deit/M36_384.pth) |
|
||||
| M48 | 86.5 | 448 | 329.6B| 356M | [model](https://dl.fbaipublicfiles.com/deit/M48_448.pth) |
|
||||
|
||||
|
||||
The models are also available via torch hub.
|
||||
Before using it, make sure you have the pytorch-image-models package [`timm==0.3.2`](https://github.com/rwightman/pytorch-image-models) by [Ross Wightman](https://github.com/rwightman) installed.
|
||||
|
||||
# Evaluation transforms
|
||||
|
||||
CaiT employs a slightly different pre-processing, in particular a crop-ratio of 1.0 at test time. To reproduce the results of our paper please use the following pre-processing:
|
||||
|
||||
```
|
||||
def get_test_transforms(input_size):
|
||||
mean, std = [0.485, 0.456, 0.406],[0.229, 0.224, 0.225]
|
||||
transformations = {}
|
||||
transformations= transforms.Compose(
|
||||
[transforms.Resize(input_size, interpolation=3),
|
||||
transforms.CenterCrop(input_size),
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize(mean, std)])
|
||||
return transformations
|
||||
```
|
||||
|
||||
Remark: for CaiT M48 it is best to evaluate with FP32 precision
|
||||
|
||||
# License
|
||||
This repository is released under the Apache 2.0 license as found in the [LICENSE](LICENSE) file.
|
||||
|
||||
# Contributing
|
||||
We actively welcome your pull requests! Please see [CONTRIBUTING.md](.github/CONTRIBUTING.md) and [CODE_OF_CONDUCT.md](.github/CODE_OF_CONDUCT.md) for more info.
|
395
cait_models.py
Normal file
395
cait_models.py
Normal file
@ -0,0 +1,395 @@
|
||||
# Copyright (c) 2015-present, Facebook, Inc.
|
||||
# All rights reserved.
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from functools import partial
|
||||
|
||||
from timm.models.vision_transformer import Mlp, PatchEmbed , _cfg
|
||||
from timm.models.registry import register_model
|
||||
from timm.models.layers import trunc_normal_
|
||||
|
||||
|
||||
__all__ = [
|
||||
'cait_M48', 'cait_M36', 'cait_M4',
|
||||
'cait_S36', 'cait_S24','cait_S24_224',
|
||||
'cait_XS24'
|
||||
]
|
||||
|
||||
|
||||
class Class_Attention(nn.Module):
|
||||
# taken from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
|
||||
# with slight modifications to do CA
|
||||
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
|
||||
super().__init__()
|
||||
self.num_heads = num_heads
|
||||
head_dim = dim // num_heads
|
||||
self.scale = qk_scale or head_dim ** -0.5
|
||||
|
||||
self.q = nn.Linear(dim, dim, bias=qkv_bias)
|
||||
self.k = nn.Linear(dim, dim, bias=qkv_bias)
|
||||
self.v = nn.Linear(dim, dim, bias=qkv_bias)
|
||||
self.attn_drop = nn.Dropout(attn_drop)
|
||||
self.proj = nn.Linear(dim, dim)
|
||||
self.proj_drop = nn.Dropout(proj_drop)
|
||||
|
||||
|
||||
def forward(self, x ):
|
||||
|
||||
B, N, C = x.shape
|
||||
q = self.q(x[:,0]).unsqueeze(1).reshape(B, 1, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
|
||||
k = self.k(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
|
||||
|
||||
q = q * self.scale
|
||||
v = self.v(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
|
||||
|
||||
attn = (q @ k.transpose(-2, -1))
|
||||
attn = attn.softmax(dim=-1)
|
||||
attn = self.attn_drop(attn)
|
||||
|
||||
x_cls = (attn @ v).transpose(1, 2).reshape(B, 1, C)
|
||||
x_cls = self.proj(x_cls)
|
||||
x_cls = self.proj_drop(x_cls)
|
||||
|
||||
return x_cls
|
||||
|
||||
class LayerScale_Block_CA(nn.Module):
|
||||
# taken from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
|
||||
# with slight modifications to add CA and LayerScale
|
||||
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
|
||||
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, Attention_block = Class_Attention,
|
||||
Mlp_block=Mlp,init_values=1e-4):
|
||||
super().__init__()
|
||||
self.norm1 = norm_layer(dim)
|
||||
self.attn = Attention_block(
|
||||
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
|
||||
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
||||
self.norm2 = norm_layer(dim)
|
||||
mlp_hidden_dim = int(dim * mlp_ratio)
|
||||
self.mlp = Mlp_block(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
||||
self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True)
|
||||
self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True)
|
||||
|
||||
|
||||
def forward(self, x, x_cls):
|
||||
|
||||
u = torch.cat((x_cls,x),dim=1)
|
||||
|
||||
|
||||
x_cls = x_cls + self.drop_path(self.gamma_1 * self.attn(self.norm1(u)))
|
||||
|
||||
x_cls = x_cls + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x_cls)))
|
||||
|
||||
return x_cls
|
||||
|
||||
|
||||
class Attention_talking_head(nn.Module):
|
||||
# taken from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
|
||||
# with slight modifications to add Talking Heads Attention (https://arxiv.org/pdf/2003.02436v1.pdf)
|
||||
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
|
||||
super().__init__()
|
||||
|
||||
self.num_heads = num_heads
|
||||
|
||||
head_dim = dim // num_heads
|
||||
|
||||
self.scale = qk_scale or head_dim ** -0.5
|
||||
|
||||
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
||||
self.attn_drop = nn.Dropout(attn_drop)
|
||||
|
||||
self.proj = nn.Linear(dim, dim)
|
||||
|
||||
self.proj_l = nn.Linear(num_heads, num_heads)
|
||||
self.proj_w = nn.Linear(num_heads, num_heads)
|
||||
|
||||
self.proj_drop = nn.Dropout(proj_drop)
|
||||
|
||||
|
||||
|
||||
def forward(self, x):
|
||||
B, N, C = x.shape
|
||||
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
||||
q, k, v = qkv[0] * self.scale , qkv[1], qkv[2]
|
||||
|
||||
attn = (q @ k.transpose(-2, -1))
|
||||
|
||||
attn = self.proj_l(attn.permute(0,2,3,1)).permute(0,3,1,2)
|
||||
|
||||
attn = attn.softmax(dim=-1)
|
||||
|
||||
attn = self.proj_w(attn.permute(0,2,3,1)).permute(0,3,1,2)
|
||||
attn = self.attn_drop(attn)
|
||||
|
||||
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
||||
x = self.proj(x)
|
||||
x = self.proj_drop(x)
|
||||
return x
|
||||
|
||||
class LayerScale_Block(nn.Module):
|
||||
# taken from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
|
||||
# with slight modifications to add layerScale
|
||||
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
|
||||
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm,Attention_block = Attention_talking_head,
|
||||
Mlp_block=Mlp,init_values=1e-4):
|
||||
super().__init__()
|
||||
self.norm1 = norm_layer(dim)
|
||||
self.attn = Attention_block(
|
||||
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
|
||||
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
||||
self.norm2 = norm_layer(dim)
|
||||
mlp_hidden_dim = int(dim * mlp_ratio)
|
||||
self.mlp = Mlp_block(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
||||
self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True)
|
||||
self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True)
|
||||
|
||||
def forward(self, x):
|
||||
x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x)))
|
||||
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
|
||||
return x
|
||||
|
||||
|
||||
|
||||
|
||||
class cait_models(nn.Module):
|
||||
# taken from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
|
||||
# with slight modifications to adapt to our cait models
|
||||
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12,
|
||||
num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0.,
|
||||
drop_path_rate=0., norm_layer=nn.LayerNorm, global_pool=None,
|
||||
block_layers = LayerScale_Block,
|
||||
block_layers_token = LayerScale_Block_CA,
|
||||
Patch_layer=PatchEmbed,act_layer=nn.GELU,
|
||||
Attention_block = Attention_talking_head,Mlp_block=Mlp,
|
||||
init_scale=1e-4,
|
||||
Attention_block_token_only=Class_Attention,
|
||||
Mlp_block_token_only= Mlp,
|
||||
depth_token_only=2,
|
||||
mlp_ratio_clstk = 4.0):
|
||||
super().__init__()
|
||||
|
||||
|
||||
|
||||
self.num_classes = num_classes
|
||||
self.num_features = self.embed_dim = embed_dim
|
||||
|
||||
self.patch_embed = Patch_layer(
|
||||
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
|
||||
|
||||
num_patches = self.patch_embed.num_patches
|
||||
|
||||
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
||||
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
|
||||
self.pos_drop = nn.Dropout(p=drop_rate)
|
||||
|
||||
dpr = [drop_path_rate for i in range(depth)]
|
||||
self.blocks = nn.ModuleList([
|
||||
block_layers(
|
||||
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
||||
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
|
||||
act_layer=act_layer,Attention_block=Attention_block,Mlp_block=Mlp_block,init_values=init_scale)
|
||||
for i in range(depth)])
|
||||
|
||||
|
||||
self.blocks_token_only = nn.ModuleList([
|
||||
block_layers_token(
|
||||
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio_clstk, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
||||
drop=0.0, attn_drop=0.0, drop_path=0.0, norm_layer=norm_layer,
|
||||
act_layer=act_layer,Attention_block=Attention_block_token_only,
|
||||
Mlp_block=Mlp_block_token_only,init_values=init_scale)
|
||||
for i in range(depth_token_only)])
|
||||
|
||||
self.norm = norm_layer(embed_dim)
|
||||
|
||||
|
||||
self.feature_info = [dict(num_chs=embed_dim, reduction=0, module='head')]
|
||||
self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()
|
||||
|
||||
trunc_normal_(self.pos_embed, std=.02)
|
||||
trunc_normal_(self.cls_token, std=.02)
|
||||
self.apply(self._init_weights)
|
||||
|
||||
def _init_weights(self, m):
|
||||
if isinstance(m, nn.Linear):
|
||||
trunc_normal_(m.weight, std=.02)
|
||||
if isinstance(m, nn.Linear) and m.bias is not None:
|
||||
nn.init.constant_(m.bias, 0)
|
||||
elif isinstance(m, nn.LayerNorm):
|
||||
nn.init.constant_(m.bias, 0)
|
||||
nn.init.constant_(m.weight, 1.0)
|
||||
|
||||
@torch.jit.ignore
|
||||
def no_weight_decay(self):
|
||||
return {'pos_embed', 'cls_token'}
|
||||
|
||||
|
||||
def forward_features(self, x):
|
||||
B = x.shape[0]
|
||||
x = self.patch_embed(x)
|
||||
|
||||
cls_tokens = self.cls_token.expand(B, -1, -1)
|
||||
|
||||
x = x + self.pos_embed
|
||||
x = self.pos_drop(x)
|
||||
|
||||
for i , blk in enumerate(self.blocks):
|
||||
x = blk(x)
|
||||
|
||||
for i , blk in enumerate(self.blocks_token_only):
|
||||
cls_tokens = blk(x,cls_tokens)
|
||||
|
||||
x = torch.cat((cls_tokens, x), dim=1)
|
||||
|
||||
|
||||
x = self.norm(x)
|
||||
return x[:, 0]
|
||||
|
||||
def forward(self, x):
|
||||
x = self.forward_features(x)
|
||||
|
||||
x = self.head(x)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
|
||||
@register_model
|
||||
def cait_XS24(pretrained=False, **kwargs):
|
||||
model = cait_models(
|
||||
img_size= 384,patch_size=16, embed_dim=288, depth=24, num_heads=6, mlp_ratio=4, qkv_bias=True,
|
||||
norm_layer=partial(nn.LayerNorm, eps=1e-6),
|
||||
init_scale=1e-5,
|
||||
depth_token_only=2,**kwargs)
|
||||
|
||||
model.default_cfg = _cfg()
|
||||
if pretrained:
|
||||
checkpoint = torch.hub.load_state_dict_from_url(
|
||||
url="https://dl.fbaipublicfiles.com/deit/XS24_384.pth",
|
||||
map_location="cpu", check_hash=True
|
||||
)
|
||||
checkpoint_no_module = {}
|
||||
for k in model.state_dict().keys():
|
||||
checkpoint_no_module[k] = checkpoint["model"]['module.'+k]
|
||||
|
||||
model.load_state_dict(checkpoint_no_module)
|
||||
|
||||
return model
|
||||
|
||||
|
||||
|
||||
|
||||
@register_model
|
||||
def cait_S24_224(pretrained=False, **kwargs):
|
||||
model = cait_models(
|
||||
img_size= 224,patch_size=16, embed_dim=384, depth=24, num_heads=8, mlp_ratio=4, qkv_bias=True,
|
||||
norm_layer=partial(nn.LayerNorm, eps=1e-6),
|
||||
init_scale=1e-5,
|
||||
depth_token_only=2,**kwargs)
|
||||
|
||||
model.default_cfg = _cfg()
|
||||
if pretrained:
|
||||
checkpoint = torch.hub.load_state_dict_from_url(
|
||||
url="https://dl.fbaipublicfiles.com/deit/S24_224.pth",
|
||||
map_location="cpu", check_hash=True
|
||||
)
|
||||
checkpoint_no_module = {}
|
||||
for k in model.state_dict().keys():
|
||||
checkpoint_no_module[k] = checkpoint["model"]['module.'+k]
|
||||
|
||||
model.load_state_dict(checkpoint_no_module)
|
||||
|
||||
return model
|
||||
|
||||
@register_model
|
||||
def cait_S24(pretrained=False, **kwargs):
|
||||
model = cait_models(
|
||||
img_size= 384,patch_size=16, embed_dim=384, depth=24, num_heads=8, mlp_ratio=4, qkv_bias=True,
|
||||
norm_layer=partial(nn.LayerNorm, eps=1e-6),
|
||||
init_scale=1e-5,
|
||||
depth_token_only=2,**kwargs)
|
||||
|
||||
model.default_cfg = _cfg()
|
||||
if pretrained:
|
||||
checkpoint = torch.hub.load_state_dict_from_url(
|
||||
url="https://dl.fbaipublicfiles.com/deit/S24_384.pth",
|
||||
map_location="cpu", check_hash=True
|
||||
)
|
||||
checkpoint_no_module = {}
|
||||
for k in model.state_dict().keys():
|
||||
checkpoint_no_module[k] = checkpoint["model"]['module.'+k]
|
||||
|
||||
model.load_state_dict(checkpoint_no_module)
|
||||
|
||||
return model
|
||||
|
||||
@register_model
|
||||
def cait_S36(pretrained=False, **kwargs):
|
||||
model = cait_models(
|
||||
img_size= 384,patch_size=16, embed_dim=384, depth=36, num_heads=8, mlp_ratio=4, qkv_bias=True,
|
||||
norm_layer=partial(nn.LayerNorm, eps=1e-6),
|
||||
dpr_constant=True,
|
||||
init_scale=1e-6,
|
||||
depth_token_only=2,**kwargs)
|
||||
|
||||
model.default_cfg = _cfg()
|
||||
if pretrained:
|
||||
checkpoint = torch.hub.load_state_dict_from_url(
|
||||
url="https://dl.fbaipublicfiles.com/deit/S36_384.pth",
|
||||
map_location="cpu", check_hash=True
|
||||
)
|
||||
checkpoint_no_module = {}
|
||||
for k in model.state_dict().keys():
|
||||
checkpoint_no_module[k] = checkpoint["model"]['module.'+k]
|
||||
|
||||
model.load_state_dict(checkpoint_no_module)
|
||||
|
||||
return model
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
@register_model
|
||||
def cait_M36(pretrained=False, **kwargs):
|
||||
model = cait_models(
|
||||
img_size= 384, patch_size=16, embed_dim=768, depth=36, num_heads=16, mlp_ratio=4, qkv_bias=True,
|
||||
norm_layer=partial(nn.LayerNorm, eps=1e-6),
|
||||
init_scale=1e-6,
|
||||
depth_token_only=2,**kwargs)
|
||||
|
||||
model.default_cfg = _cfg()
|
||||
if pretrained:
|
||||
checkpoint = torch.hub.load_state_dict_from_url(
|
||||
url="https://dl.fbaipublicfiles.com/deit/M36_384.pth",
|
||||
map_location="cpu", check_hash=True
|
||||
)
|
||||
checkpoint_no_module = {}
|
||||
for k in model.state_dict().keys():
|
||||
checkpoint_no_module[k] = checkpoint["model"]['module.'+k]
|
||||
|
||||
model.load_state_dict(checkpoint_no_module)
|
||||
|
||||
return model
|
||||
|
||||
|
||||
@register_model
|
||||
def cait_M48(pretrained=False, **kwargs):
|
||||
model = cait_models(
|
||||
img_size= 448 , patch_size=16, embed_dim=768, depth=48, num_heads=16, mlp_ratio=4, qkv_bias=True,
|
||||
norm_layer=partial(nn.LayerNorm, eps=1e-6),
|
||||
init_scale=1e-6,
|
||||
depth_token_only=2,**kwargs)
|
||||
|
||||
model.default_cfg = _cfg()
|
||||
if pretrained:
|
||||
checkpoint = torch.hub.load_state_dict_from_url(
|
||||
url="https://dl.fbaipublicfiles.com/deit/M48_448.pth",
|
||||
map_location="cpu", check_hash=True
|
||||
)
|
||||
checkpoint_no_module = {}
|
||||
for k in model.state_dict().keys():
|
||||
checkpoint_no_module[k] = checkpoint["model"]['module.'+k]
|
||||
|
||||
model.load_state_dict(checkpoint_no_module)
|
||||
|
||||
return model
|
Loading…
x
Reference in New Issue
Block a user