mirror of
https://github.com/facebookresearch/deit.git
synced 2025-06-03 14:52:20 +08:00
[NAS] Modify the infrasturcture for nas training
This commit is contained in:
parent
0e1a79af52
commit
afadc46e64
@ -28,6 +28,8 @@ def train_one_epoch(model: torch.nn.Module, criterion: DistillationLoss,
|
|||||||
print_freq = 10
|
print_freq = 10
|
||||||
|
|
||||||
for samples, targets in metric_logger.log_every(data_loader, print_freq, header):
|
for samples, targets in metric_logger.log_every(data_loader, print_freq, header):
|
||||||
|
if args.nas_mode:
|
||||||
|
model.module.set_random_sample_config()
|
||||||
samples = samples.to(device, non_blocking=True)
|
samples = samples.to(device, non_blocking=True)
|
||||||
targets = targets.to(device, non_blocking=True)
|
targets = targets.to(device, non_blocking=True)
|
||||||
|
|
||||||
|
62
main.py
62
main.py
@ -27,7 +27,8 @@ from augment import new_data_aug_generator
|
|||||||
|
|
||||||
import models
|
import models
|
||||||
import models_v2
|
import models_v2
|
||||||
|
import model_sparse
|
||||||
|
import random
|
||||||
import utils
|
import utils
|
||||||
|
|
||||||
from sparsity_factory.pruners import weight_pruner_loader, prune_weights_reparam, check_valid_pruner
|
from sparsity_factory.pruners import weight_pruner_loader, prune_weights_reparam, check_valid_pruner
|
||||||
@ -173,7 +174,7 @@ def get_args_parser():
|
|||||||
parser.add_argument('--eval', action='store_true', help='Perform evaluation only')
|
parser.add_argument('--eval', action='store_true', help='Perform evaluation only')
|
||||||
parser.add_argument('--eval-crop-ratio', default=0.875, type=float, help="Crop ratio for evaluation")
|
parser.add_argument('--eval-crop-ratio', default=0.875, type=float, help="Crop ratio for evaluation")
|
||||||
parser.add_argument('--dist-eval', action='store_true', default=False, help='Enabling distributed evaluation')
|
parser.add_argument('--dist-eval', action='store_true', default=False, help='Enabling distributed evaluation')
|
||||||
parser.add_argument('--num_workers', default=10, type=int)
|
parser.add_argument('--num_workers', default=16, type=int)
|
||||||
parser.add_argument('--pin-mem', action='store_true',
|
parser.add_argument('--pin-mem', action='store_true',
|
||||||
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
|
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
|
||||||
parser.add_argument('--no-pin-mem', action='store_false', dest='pin_mem',
|
parser.add_argument('--no-pin-mem', action='store_false', dest='pin_mem',
|
||||||
@ -185,13 +186,24 @@ def get_args_parser():
|
|||||||
help='number of distributed processes')
|
help='number of distributed processes')
|
||||||
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
|
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
|
||||||
|
|
||||||
# sparsity parameters
|
# Sparsity Training Related Flag
|
||||||
parser.add_argument('--pruner', type=str, help='pruning criterion')
|
parser.add_argument('--nas-config', type=str, help='configuration for supernet training')
|
||||||
parser.add_argument('--sparsity', type=float, default=1.0, help = 'the sparisty level (ratio of unpruned weight)')
|
parser.add_argument('--nas-mode', action='store_true')
|
||||||
parser.add_argument('--custom-config', type=str, help='customized configuration of sparsity level for each linear layer')
|
|
||||||
return parser
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def gen_random_config_fn(config):
|
||||||
|
if utils.get_rank() == 0 : # print whether to use non_unifrom at initialization at main process
|
||||||
|
print(f"Set up the uniform sampling function")
|
||||||
|
def _fn_uni():
|
||||||
|
def weights(ratios):
|
||||||
|
return [1 for _ in ratios]
|
||||||
|
res = []
|
||||||
|
for ratios in config['sparsity']['choices']:
|
||||||
|
res.append(random.choices(ratios, weights(ratios))[0])
|
||||||
|
return res
|
||||||
|
return _fn_uni
|
||||||
|
|
||||||
def main(args):
|
def main(args):
|
||||||
utils.init_distributed_mode(args)
|
utils.init_distributed_mode(args)
|
||||||
|
|
||||||
@ -263,6 +275,9 @@ def main(args):
|
|||||||
prob=args.mixup_prob, switch_prob=args.mixup_switch_prob, mode=args.mixup_mode,
|
prob=args.mixup_prob, switch_prob=args.mixup_switch_prob, mode=args.mixup_mode,
|
||||||
label_smoothing=args.smoothing, num_classes=args.nb_classes)
|
label_smoothing=args.smoothing, num_classes=args.nb_classes)
|
||||||
|
|
||||||
|
with open(args.nas_config) as f:
|
||||||
|
nas_config = yaml.load(f, Loader=SafeLoader)
|
||||||
|
|
||||||
print(f"Creating model: {args.model}")
|
print(f"Creating model: {args.model}")
|
||||||
model = create_model(
|
model = create_model(
|
||||||
args.model,
|
args.model,
|
||||||
@ -274,29 +289,6 @@ def main(args):
|
|||||||
img_size=args.input_size
|
img_size=args.input_size
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
if args.pruner == 'custom':
|
|
||||||
if args.custom_config:
|
|
||||||
with open(args.custom_config) as f:
|
|
||||||
config = yaml.load(f, Loader=SafeLoader)
|
|
||||||
else:
|
|
||||||
raise ValueError("Please provide the configuration file when using the custom mode")
|
|
||||||
|
|
||||||
mode = config['sparsity']['mode']
|
|
||||||
sparsity_config = config['sparsity']['level']
|
|
||||||
|
|
||||||
pruner = weight_pruner_loader(args.pruner)
|
|
||||||
pruner(model, mode, sparsity_config)
|
|
||||||
elif check_valid_pruner(args.pruner):
|
|
||||||
pruner = weight_pruner_loader(args.pruner)
|
|
||||||
prune_weights_reparam(model)
|
|
||||||
pruner(model, args.sparsity)
|
|
||||||
else:
|
|
||||||
raise ValueError(f"Pruner '{args.pruner}' is not supported")
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
if args.finetune:
|
if args.finetune:
|
||||||
if args.finetune.startswith('https'):
|
if args.finetune.startswith('https'):
|
||||||
checkpoint = torch.hub.load_state_dict_from_url(
|
checkpoint = torch.hub.load_state_dict_from_url(
|
||||||
@ -370,6 +362,15 @@ def main(args):
|
|||||||
if args.distributed:
|
if args.distributed:
|
||||||
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
|
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
|
||||||
model_without_ddp = model.module
|
model_without_ddp = model.module
|
||||||
|
|
||||||
|
if args.nas_mode:
|
||||||
|
smallest_config = []
|
||||||
|
for ratios in nas_config['sparsity']['choices']:
|
||||||
|
smallest_config.append(ratios[0])
|
||||||
|
model_without_ddp.set_random_config_fn(gen_random_config_fn(nas_config))
|
||||||
|
model_without_ddp.set_sample_config(smallest_config)
|
||||||
|
|
||||||
|
|
||||||
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
|
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
|
||||||
print('number of params:', n_parameters)
|
print('number of params:', n_parameters)
|
||||||
if not args.unscale_lr:
|
if not args.unscale_lr:
|
||||||
@ -493,9 +494,6 @@ def main(args):
|
|||||||
'epoch': epoch,
|
'epoch': epoch,
|
||||||
'n_parameters': n_parameters}
|
'n_parameters': n_parameters}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
if args.output_dir and utils.is_main_process():
|
if args.output_dir and utils.is_main_process():
|
||||||
with (output_dir / "log.txt").open("a") as f:
|
with (output_dir / "log.txt").open("a") as f:
|
||||||
f.write(json.dumps(log_stats) + "\n")
|
f.write(json.dumps(log_stats) + "\n")
|
||||||
|
@ -313,7 +313,6 @@ class SparseVisionTransformer(nn.Module):
|
|||||||
|
|
||||||
def set_sample_config(self, sparse_configs):
|
def set_sample_config(self, sparse_configs):
|
||||||
for ratio, layer in zip(sparse_configs, filter(lambda x: isinstance(x, SparseLinearSuper), self.modules())):
|
for ratio, layer in zip(sparse_configs, filter(lambda x: isinstance(x, SparseLinearSuper), self.modules())):
|
||||||
#print(ratio, layer)
|
|
||||||
layer.set_sample_config(ratio)
|
layer.set_sample_config(ratio)
|
||||||
|
|
||||||
def set_random_config_fn(self, fn):
|
def set_random_config_fn(self, fn):
|
||||||
|
429
models.py
429
models.py
@ -1,82 +1,348 @@
|
|||||||
# Copyright (c) 2015-present, Facebook, Inc.
|
""" Vision Transformer (ViT) in PyTorch
|
||||||
# All rights reserved.
|
|
||||||
|
A PyTorch implement of Vision Transformers as described in:
|
||||||
|
|
||||||
|
'An Image Is Worth 16 x 16 Words: Transformers for Image Recognition at Scale'
|
||||||
|
- https://arxiv.org/abs/2010.11929
|
||||||
|
|
||||||
|
`How to train your ViT? Data, Augmentation, and Regularization in Vision Transformers`
|
||||||
|
- https://arxiv.org/abs/2106.10270
|
||||||
|
|
||||||
|
The official jax code is released and available at https://github.com/google-research/vision_transformer
|
||||||
|
|
||||||
|
DeiT model defs and weights from https://github.com/facebookresearch/deit,
|
||||||
|
paper `DeiT: Data-efficient Image Transformers` - https://arxiv.org/abs/2012.12877
|
||||||
|
|
||||||
|
Acknowledgments:
|
||||||
|
* The paper authors for releasing code and weights, thanks!
|
||||||
|
* I fixed my class token impl based on Phil Wang's https://github.com/lucidrains/vit-pytorch ... check it out
|
||||||
|
for some einops/einsum fun
|
||||||
|
* Simple transformer style inspired by Andrej Karpathy's https://github.com/karpathy/minGPT
|
||||||
|
* Bert reference code checks against Huggingface Transformers and Tensorflow Bert
|
||||||
|
|
||||||
|
Hacked together by / Copyright 2020, Ross Wightman
|
||||||
|
"""
|
||||||
|
import math
|
||||||
|
import logging
|
||||||
|
from functools import partial
|
||||||
|
from collections import OrderedDict
|
||||||
|
from copy import deepcopy
|
||||||
|
from statistics import mode
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
from functools import partial
|
import torch.nn.functional as F
|
||||||
|
|
||||||
from timm.models.vision_transformer import VisionTransformer, _cfg
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD
|
||||||
|
from timm.models.helpers import load_pretrained
|
||||||
|
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
|
||||||
from timm.models.registry import register_model
|
from timm.models.registry import register_model
|
||||||
from timm.models.layers import trunc_normal_
|
|
||||||
|
from sparse_linear import SparseLinearSuper
|
||||||
|
|
||||||
|
_logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
__all__ = [
|
def _cfg(url='', **kwargs):
|
||||||
'deit_tiny_patch16_224', 'deit_small_patch16_224', 'deit_base_patch16_224',
|
return {
|
||||||
'deit_tiny_distilled_patch16_224', 'deit_small_distilled_patch16_224',
|
'url': url,
|
||||||
'deit_base_distilled_patch16_224', 'deit_base_patch16_384',
|
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
|
||||||
'deit_base_distilled_patch16_384',
|
'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True,
|
||||||
]
|
'mean': IMAGENET_INCEPTION_MEAN, 'std': IMAGENET_INCEPTION_STD,
|
||||||
|
'first_conv': 'patch_embed.proj', 'classifier': 'head',
|
||||||
|
**kwargs
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
class DistilledVisionTransformer(VisionTransformer):
|
default_cfgs = {
|
||||||
def __init__(self, *args, **kwargs):
|
# patch models
|
||||||
super().__init__(*args, **kwargs)
|
'vit_small_patch16_224': _cfg(
|
||||||
self.dist_token = nn.Parameter(torch.zeros(1, 1, self.embed_dim))
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/vit_small_p16_224-15ec54c9.pth',
|
||||||
|
),
|
||||||
|
'vit_base_patch16_224': _cfg(
|
||||||
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_224-80ecf9dd.pth',
|
||||||
|
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5),
|
||||||
|
),
|
||||||
|
'vit_base_patch16_384': _cfg(
|
||||||
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_384-83fb41ba.pth',
|
||||||
|
input_size=(3, 384, 384), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0),
|
||||||
|
'vit_base_patch32_384': _cfg(
|
||||||
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p32_384-830016f5.pth',
|
||||||
|
input_size=(3, 384, 384), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0),
|
||||||
|
'vit_large_patch16_224': _cfg(
|
||||||
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p16_224-4ee7a4dc.pth',
|
||||||
|
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
|
||||||
|
'vit_large_patch16_384': _cfg(
|
||||||
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p16_384-b3be5167.pth',
|
||||||
|
input_size=(3, 384, 384), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0),
|
||||||
|
'vit_large_patch32_384': _cfg(
|
||||||
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p32_384-9b920ba8.pth',
|
||||||
|
input_size=(3, 384, 384), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0),
|
||||||
|
'vit_huge_patch16_224': _cfg(),
|
||||||
|
'vit_huge_patch32_384': _cfg(input_size=(3, 384, 384)),
|
||||||
|
# hybrid models
|
||||||
|
'vit_small_resnet26d_224': _cfg(),
|
||||||
|
'vit_small_resnet50d_s3_224': _cfg(),
|
||||||
|
'vit_base_resnet26d_224': _cfg(),
|
||||||
|
'vit_base_resnet50d_224': _cfg(),
|
||||||
|
}
|
||||||
|
|
||||||
|
class LRMlpSuper(nn.Module):
|
||||||
|
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
||||||
|
super().__init__()
|
||||||
|
out_features = out_features or in_features
|
||||||
|
hidden_features = hidden_features or in_features
|
||||||
|
self.act = act_layer()
|
||||||
|
self.drop = nn.Dropout(drop)
|
||||||
|
self.fc1 = SparseLinearSuper(in_features, hidden_features)
|
||||||
|
self.fc2 = SparseLinearSuper(hidden_features, out_features)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
x = self.fc1(x)
|
||||||
|
x = self.act(x)
|
||||||
|
x = self.drop(x)
|
||||||
|
x = self.fc2(x)
|
||||||
|
x = self.drop(x)
|
||||||
|
return x
|
||||||
|
|
||||||
|
class LRAttentionSuper(nn.Module):
|
||||||
|
def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.):
|
||||||
|
super().__init__()
|
||||||
|
self.num_heads = num_heads
|
||||||
|
head_dim = dim // num_heads
|
||||||
|
self.scale = head_dim ** -0.5
|
||||||
|
|
||||||
|
self.proj = SparseLinearSuper(dim, dim)
|
||||||
|
self.qkv = SparseLinearSuper(dim, dim * 3, bias = qkv_bias)
|
||||||
|
self.attn_drop = nn.Dropout(attn_drop)
|
||||||
|
self.proj_drop = nn.Dropout(proj_drop)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
B, N, C = x.shape
|
||||||
|
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
||||||
|
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
|
||||||
|
|
||||||
|
attn = (q @ k.transpose(-2, -1)) * self.scale
|
||||||
|
attn = attn.softmax(dim=-1)
|
||||||
|
attn = self.attn_drop(attn)
|
||||||
|
|
||||||
|
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
||||||
|
x = self.proj(x)
|
||||||
|
x = self.proj_drop(x)
|
||||||
|
return x
|
||||||
|
|
||||||
|
class Block(nn.Module):
|
||||||
|
|
||||||
|
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0.,
|
||||||
|
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
|
||||||
|
super().__init__()
|
||||||
|
self.norm1 = norm_layer(dim)
|
||||||
|
self.attn = LRAttentionSuper(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop, )
|
||||||
|
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
||||||
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
||||||
|
self.norm2 = norm_layer(dim)
|
||||||
|
mlp_hidden_dim = int(dim * mlp_ratio)
|
||||||
|
self.mlp = LRMlpSuper(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
x = x + self.drop_path(self.attn(self.norm1(x)))
|
||||||
|
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
class PatchEmbed(nn.Module):
|
||||||
|
""" Image to Patch Embedding
|
||||||
|
"""
|
||||||
|
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
|
||||||
|
super().__init__()
|
||||||
|
img_size = to_2tuple(img_size)
|
||||||
|
patch_size = to_2tuple(patch_size)
|
||||||
|
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
|
||||||
|
self.img_size = img_size
|
||||||
|
self.patch_size = patch_size
|
||||||
|
self.num_patches = num_patches
|
||||||
|
|
||||||
|
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
B, C, H, W = x.shape
|
||||||
|
# FIXME look at relaxing size constraints
|
||||||
|
assert H == self.img_size[0] and W == self.img_size[1], \
|
||||||
|
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
|
||||||
|
x = self.proj(x).flatten(2).transpose(1, 2)
|
||||||
|
return x
|
||||||
|
|
||||||
|
def num_params(self):
|
||||||
|
return sum(p.numel() for p in self.parameters() if p.requires_grad)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
class SparseVisionTransformer(nn.Module):
|
||||||
|
""" Vision Transformer
|
||||||
|
|
||||||
|
A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale`
|
||||||
|
- https://arxiv.org/abs/2010.11929
|
||||||
|
|
||||||
|
Includes distillation token & head support for `DeiT: Data-efficient Image Transformers`
|
||||||
|
- https://arxiv.org/abs/2012.12877
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12,
|
||||||
|
num_heads=12, mlp_ratio=4., qkv_bias=True, representation_size=None, distilled=False,
|
||||||
|
drop_rate=0., attn_drop_rate=0., drop_path_rate=0., embed_layer=PatchEmbed, norm_layer=None,
|
||||||
|
act_layer=None, weight_init='', ):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
img_size (int, tuple): input image size
|
||||||
|
patch_size (int, tuple): patch size
|
||||||
|
in_chans (int): number of input channels
|
||||||
|
num_classes (int): number of classes for classification head
|
||||||
|
embed_dim (int): embedding dimension
|
||||||
|
depth (int): depth of transformer
|
||||||
|
num_heads (int): number of attention heads
|
||||||
|
mlp_ratio (int): ratio of mlp hidden dim to embedding dim
|
||||||
|
qkv_bias (bool): enable bias for qkv if True
|
||||||
|
representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set
|
||||||
|
distilled (bool): model includes a distillation token and head as in DeiT models
|
||||||
|
drop_rate (float): dropout rate
|
||||||
|
attn_drop_rate (float): attention dropout rate
|
||||||
|
drop_path_rate (float): stochastic depth rate
|
||||||
|
embed_layer (nn.Module): patch embedding layer
|
||||||
|
norm_layer: (nn.Module): normalization layer
|
||||||
|
weight_init: (str): weight init scheme
|
||||||
|
"""
|
||||||
|
super().__init__()
|
||||||
|
self.num_classes = num_classes
|
||||||
|
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
|
||||||
|
self.num_tokens = 2 if distilled else 1
|
||||||
|
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
|
||||||
|
act_layer = act_layer or nn.GELU
|
||||||
|
|
||||||
|
self.patch_embed = embed_layer(
|
||||||
|
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
|
||||||
num_patches = self.patch_embed.num_patches
|
num_patches = self.patch_embed.num_patches
|
||||||
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 2, self.embed_dim))
|
|
||||||
self.head_dist = nn.Linear(self.embed_dim, self.num_classes) if self.num_classes > 0 else nn.Identity()
|
|
||||||
|
|
||||||
trunc_normal_(self.dist_token, std=.02)
|
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
||||||
|
self.dist_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if distilled else None
|
||||||
|
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim))
|
||||||
|
self.pos_drop = nn.Dropout(p=drop_rate)
|
||||||
|
|
||||||
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
|
||||||
|
self.blocks = nn.Sequential(*[
|
||||||
|
Block(
|
||||||
|
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, drop=drop_rate,
|
||||||
|
attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, act_layer=act_layer)
|
||||||
|
for i in range(depth)])
|
||||||
|
self.norm = norm_layer(embed_dim)
|
||||||
|
|
||||||
|
# Representation layer
|
||||||
|
if representation_size and not distilled:
|
||||||
|
self.num_features = representation_size
|
||||||
|
self.pre_logits = nn.Sequential(OrderedDict([
|
||||||
|
('fc', nn.Linear(embed_dim, representation_size)),
|
||||||
|
('act', nn.Tanh())
|
||||||
|
]))
|
||||||
|
else:
|
||||||
|
self.pre_logits = nn.Identity()
|
||||||
|
|
||||||
|
# Classifier head(s)
|
||||||
|
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
|
||||||
|
self.head_dist = None
|
||||||
|
if distilled:
|
||||||
|
self.head_dist = nn.Linear(self.embed_dim, self.num_classes) if num_classes > 0 else nn.Identity()
|
||||||
|
|
||||||
trunc_normal_(self.pos_embed, std=.02)
|
trunc_normal_(self.pos_embed, std=.02)
|
||||||
self.head_dist.apply(self._init_weights)
|
trunc_normal_(self.cls_token, std=.02)
|
||||||
|
self.apply(self._init_weights)
|
||||||
|
|
||||||
|
def _init_weights(self, m):
|
||||||
|
if isinstance(m, nn.Linear):
|
||||||
|
trunc_normal_(m.weight, std=.02)
|
||||||
|
if isinstance(m, nn.Linear) and m.bias is not None:
|
||||||
|
nn.init.constant_(m.bias, 0)
|
||||||
|
elif isinstance(m, nn.LayerNorm):
|
||||||
|
nn.init.constant_(m.bias, 0)
|
||||||
|
nn.init.constant_(m.weight, 1.0)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
@torch.jit.ignore
|
||||||
|
def no_weight_decay(self):
|
||||||
|
return {'pos_embed', 'cls_token', 'dist_token'}
|
||||||
|
|
||||||
|
def get_classifier(self):
|
||||||
|
if self.dist_token is None:
|
||||||
|
return self.head
|
||||||
|
else:
|
||||||
|
return self.head, self.head_dist
|
||||||
|
|
||||||
|
def reset_classifier(self, num_classes, global_pool=''):
|
||||||
|
self.num_classes = num_classes
|
||||||
|
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
|
||||||
|
if self.num_tokens == 2:
|
||||||
|
self.head_dist = nn.Linear(self.embed_dim, self.num_classes) if num_classes > 0 else nn.Identity()
|
||||||
|
|
||||||
def forward_features(self, x):
|
def forward_features(self, x):
|
||||||
# taken from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
|
|
||||||
# with slight modifications to add the dist_token
|
|
||||||
B = x.shape[0]
|
|
||||||
x = self.patch_embed(x)
|
x = self.patch_embed(x)
|
||||||
|
cls_token = self.cls_token.expand(x.shape[0], -1, -1) # stole cls_tokens impl from Phil Wang, thanks
|
||||||
cls_tokens = self.cls_token.expand(B, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
|
if self.dist_token is None:
|
||||||
dist_token = self.dist_token.expand(B, -1, -1)
|
x = torch.cat((cls_token, x), dim=1)
|
||||||
x = torch.cat((cls_tokens, dist_token, x), dim=1)
|
else:
|
||||||
|
x = torch.cat((cls_token, self.dist_token.expand(x.shape[0], -1, -1), x), dim=1)
|
||||||
x = x + self.pos_embed
|
x = self.pos_drop(x + self.pos_embed)
|
||||||
x = self.pos_drop(x)
|
x = self.blocks(x)
|
||||||
|
|
||||||
for blk in self.blocks:
|
|
||||||
x = blk(x)
|
|
||||||
|
|
||||||
x = self.norm(x)
|
x = self.norm(x)
|
||||||
|
if self.dist_token is None:
|
||||||
|
return self.pre_logits(x[:, 0])
|
||||||
|
else:
|
||||||
return x[:, 0], x[:, 1]
|
return x[:, 0], x[:, 1]
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
x, x_dist = self.forward_features(x)
|
x = self.forward_features(x)
|
||||||
x = self.head(x)
|
if self.head_dist is not None:
|
||||||
x_dist = self.head_dist(x_dist)
|
x, x_dist = self.head(x[0]), self.head_dist(x[1]) # x must be a tuple
|
||||||
if self.training:
|
if self.training and not torch.jit.is_scripting():
|
||||||
|
# during inference, return the average of both classifier predictions
|
||||||
return x, x_dist
|
return x, x_dist
|
||||||
else:
|
else:
|
||||||
# during inference, return the average of both classifier predictions
|
|
||||||
return (x + x_dist) / 2
|
return (x + x_dist) / 2
|
||||||
|
else:
|
||||||
|
x = self.head(x)
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@register_model
|
@register_model
|
||||||
def deit_tiny_patch16_224(pretrained=False, **kwargs):
|
def deit_base_patch16_224(pretrained=False, **kwargs):
|
||||||
model = VisionTransformer(
|
""" DeiT base model @ 224x224 from paper (https://arxiv.org/abs/2012.12877).
|
||||||
patch_size=16, embed_dim=192, depth=12, num_heads=3, mlp_ratio=4, qkv_bias=True,
|
ImageNet-1k weights from https://github.com/facebookresearch/deit.
|
||||||
|
"""
|
||||||
|
model = SparseVisionTransformer(
|
||||||
|
patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True,
|
||||||
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
||||||
model.default_cfg = _cfg()
|
model.default_cfg = _cfg()
|
||||||
if pretrained:
|
if pretrained:
|
||||||
checkpoint = torch.hub.load_state_dict_from_url(
|
checkpoint = torch.hub.load_state_dict_from_url(
|
||||||
url="https://dl.fbaipublicfiles.com/deit/deit_tiny_patch16_224-a1311bcf.pth",
|
url="https://dl.fbaipublicfiles.com/deit/deit_base_patch16_224-b5f2ef4d.pth",
|
||||||
map_location="cpu", check_hash=True
|
map_location="cpu", check_hash=True
|
||||||
)
|
)
|
||||||
model.load_state_dict(checkpoint["model"])
|
model.load_state_dict(checkpoint["model"])
|
||||||
return model
|
return model
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@register_model
|
@register_model
|
||||||
def deit_small_patch16_224(pretrained=False, **kwargs):
|
def deit_small_patch16_224(pretrained=False, **kwargs):
|
||||||
model = VisionTransformer(
|
""" DeiT base model @ 224x224 from paper (https://arxiv.org/abs/2012.12877).
|
||||||
|
ImageNet-1k weights from https://github.com/facebookresearch/deit.
|
||||||
|
"""
|
||||||
|
model = SparseVisionTransformer(
|
||||||
patch_size=16, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4, qkv_bias=True,
|
patch_size=16, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4, qkv_bias=True,
|
||||||
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
||||||
model.default_cfg = _cfg()
|
model.default_cfg = _cfg()
|
||||||
@ -90,90 +356,25 @@ def deit_small_patch16_224(pretrained=False, **kwargs):
|
|||||||
|
|
||||||
|
|
||||||
@register_model
|
@register_model
|
||||||
def deit_base_patch16_224(pretrained=False, **kwargs):
|
def deit_tiny_patch16_224(pretrained=False, **kwargs):
|
||||||
model = VisionTransformer(
|
""" DeiT base model @ 224x224 from paper (https://arxiv.org/abs/2012.12877).
|
||||||
patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True,
|
ImageNet-1k weights from https://github.com/facebookresearch/deit.
|
||||||
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
"""
|
||||||
model.default_cfg = _cfg()
|
model = SparseVisionTransformer(
|
||||||
if pretrained:
|
|
||||||
checkpoint = torch.hub.load_state_dict_from_url(
|
|
||||||
url="https://dl.fbaipublicfiles.com/deit/deit_base_patch16_224-b5f2ef4d.pth",
|
|
||||||
map_location="cpu", check_hash=True
|
|
||||||
)
|
|
||||||
model.load_state_dict(checkpoint["model"])
|
|
||||||
return model
|
|
||||||
|
|
||||||
|
|
||||||
@register_model
|
|
||||||
def deit_tiny_distilled_patch16_224(pretrained=False, **kwargs):
|
|
||||||
model = DistilledVisionTransformer(
|
|
||||||
patch_size=16, embed_dim=192, depth=12, num_heads=3, mlp_ratio=4, qkv_bias=True,
|
patch_size=16, embed_dim=192, depth=12, num_heads=3, mlp_ratio=4, qkv_bias=True,
|
||||||
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
||||||
model.default_cfg = _cfg()
|
model.default_cfg = _cfg()
|
||||||
if pretrained:
|
if pretrained:
|
||||||
checkpoint = torch.hub.load_state_dict_from_url(
|
checkpoint = torch.hub.load_state_dict_from_url(
|
||||||
url="https://dl.fbaipublicfiles.com/deit/deit_tiny_distilled_patch16_224-b40b3cf7.pth",
|
url="https://dl.fbaipublicfiles.com/deit/deit_tiny_patch16_224-a1311bcf.pth",
|
||||||
map_location="cpu", check_hash=True
|
map_location="cpu", check_hash=True
|
||||||
)
|
)
|
||||||
model.load_state_dict(checkpoint["model"])
|
model.load_state_dict(checkpoint["model"])
|
||||||
return model
|
return model
|
||||||
|
|
||||||
|
|
||||||
@register_model
|
|
||||||
def deit_small_distilled_patch16_224(pretrained=False, **kwargs):
|
|
||||||
model = DistilledVisionTransformer(
|
|
||||||
patch_size=16, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4, qkv_bias=True,
|
|
||||||
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
|
||||||
model.default_cfg = _cfg()
|
|
||||||
if pretrained:
|
|
||||||
checkpoint = torch.hub.load_state_dict_from_url(
|
|
||||||
url="https://dl.fbaipublicfiles.com/deit/deit_small_distilled_patch16_224-649709d9.pth",
|
|
||||||
map_location="cpu", check_hash=True
|
|
||||||
)
|
|
||||||
model.load_state_dict(checkpoint["model"])
|
|
||||||
return model
|
|
||||||
|
|
||||||
|
|
||||||
@register_model
|
|
||||||
def deit_base_distilled_patch16_224(pretrained=False, **kwargs):
|
|
||||||
model = DistilledVisionTransformer(
|
|
||||||
patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True,
|
|
||||||
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
|
||||||
model.default_cfg = _cfg()
|
|
||||||
if pretrained:
|
|
||||||
checkpoint = torch.hub.load_state_dict_from_url(
|
|
||||||
url="https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_224-df68dfff.pth",
|
|
||||||
map_location="cpu", check_hash=True
|
|
||||||
)
|
|
||||||
model.load_state_dict(checkpoint["model"])
|
|
||||||
return model
|
|
||||||
|
|
||||||
|
|
||||||
@register_model
|
|
||||||
def deit_base_patch16_384(pretrained=False, **kwargs):
|
|
||||||
model = VisionTransformer(
|
|
||||||
img_size=384, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True,
|
|
||||||
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
|
||||||
model.default_cfg = _cfg()
|
|
||||||
if pretrained:
|
|
||||||
checkpoint = torch.hub.load_state_dict_from_url(
|
|
||||||
url="https://dl.fbaipublicfiles.com/deit/deit_base_patch16_384-8de9b5d1.pth",
|
|
||||||
map_location="cpu", check_hash=True
|
|
||||||
)
|
|
||||||
model.load_state_dict(checkpoint["model"])
|
|
||||||
return model
|
|
||||||
|
|
||||||
|
|
||||||
@register_model
|
|
||||||
def deit_base_distilled_patch16_384(pretrained=False, **kwargs):
|
|
||||||
model = DistilledVisionTransformer(
|
|
||||||
img_size=384, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True,
|
|
||||||
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
|
||||||
model.default_cfg = _cfg()
|
|
||||||
if pretrained:
|
|
||||||
checkpoint = torch.hub.load_state_dict_from_url(
|
|
||||||
url="https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_384-d0272ac0.pth",
|
|
||||||
map_location="cpu", check_hash=True
|
|
||||||
)
|
|
||||||
model.load_state_dict(checkpoint["model"])
|
|
||||||
return model
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user