[NFC] Update sparse linear add the __repr__

This commit is contained in:
shadowpa0327 2023-03-16 07:03:35 +00:00
parent a2852e8941
commit be01a30ac2

View File

@ -13,7 +13,6 @@ def compute_mask(t, N, M):
nparams_topprune = int(M * (1-percentile))
if nparams_topprune != 0:
topk = torch.topk(torch.abs(t_reshaped), k=nparams_topprune, largest=False, dim = -1)
#print(topk.indices)
mask_reshaped = mask_reshaped.scatter(dim = -1, index = topk.indices, value = 0)
return mask_reshaped.reshape(out_channel, in_channel)
@ -21,6 +20,8 @@ def compute_mask(t, N, M):
class SparseLinearSuper(nn.Module):
def __init__(self, in_features, out_features, bias=True):
super().__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = nn.Parameter(torch.ones(out_features, in_features))
if bias:
self.bias = nn.Parameter(torch.ones(out_features))
@ -39,7 +40,9 @@ class SparseLinearSuper(nn.Module):
n, m = self.sparsity_config
self.mask = compute_mask(self.weight, n, m)
def __repr__(self):
return f"SparseLinearSuper(in_features={self.in_features}, out_features={self.out_features}, sparse_config:{self.sparsity_config})"
def forward(self, x):
weight = self.weight * self.mask
#weight = self.weight
@ -58,7 +61,7 @@ if __name__ == '__main__':
m = SparseLinearSuper(12, 12)
input = torch.randn(12)
print(m(input))
m.set_sample_config((2,4))
m.set_sample_config((1,4))
print(m(input))
print(m.num_pruned_params())
#print(sum(p.numel() for p in m.parameters() if p.requires_grad))