# Copyright (c) 2015-present, Facebook, Inc. # All rights reserved. import torch import torch.nn as nn from functools import partial import torch.nn.functional as F from timm.models.layers import DropPath, to_2tuple, trunc_normal_ from timm.models.registry import register_model from timm.models.efficientnet_blocks import SqueezeExcite __all__ = [ 'S60','S120', 'B60','B120', 'L60','L120' ] class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class Learned_Aggregation_Layer(nn.Module): def __init__(self, dim, num_heads=1, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights self.scale = qk_scale or head_dim ** -0.5 self.q = nn.Linear(dim, dim, bias=qkv_bias) self.k = nn.Linear(dim, dim, bias=qkv_bias) self.v = nn.Linear(dim, dim, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x ): B, N, C = x.shape q = self.q(x[:,0]).unsqueeze(1).reshape(B, 1, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) k = self.k(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) q = q * self.scale v = self.v(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) attn = (q @ k.transpose(-2, -1)) attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x_cls = (attn @ v).transpose(1, 2).reshape(B, 1, C) x_cls = self.proj(x_cls) x_cls = self.proj_drop(x_cls) return x_cls class Layer_scale_init_Block_only_token(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, Attention_block = Learned_Aggregation_Layer, Mlp_block=Mlp, init_values=1e-4): super().__init__() self.norm1 = norm_layer(dim) self.attn = Attention_block( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp_block(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True) self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True) def forward(self, x, x_cls): u = torch.cat((x_cls,x),dim=1) x_cls = x_cls + self.drop_path(self.gamma_1 * self.attn(self.norm1(u))) x_cls = x_cls + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x_cls))) return x_cls class Conv_blocks_se(nn.Module): def __init__(self, dim): super().__init__() self.qkv_pos = nn.Sequential( nn.Conv2d(dim, dim, kernel_size = 1), nn.GELU(), nn.Conv2d(dim, dim, groups = dim, kernel_size = 3, padding = 1, stride = 1, bias = True), nn.GELU(), SqueezeExcite(dim, rd_ratio=0.25), nn.Conv2d(dim, dim, kernel_size=1), ) def forward(self, x): B, N, C = x.shape H = W = int(N**0.5) x = x.transpose(-1,-2) x = x.reshape(B,C,H,W) x = self.qkv_pos(x) x = x.reshape(B,C,N) x = x.transpose(-1,-2) return x class Layer_scale_init_Block(nn.Module): def __init__(self, dim,drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm,Attention_block = None,init_values=1e-4): super().__init__() self.norm1 = norm_layer(dim) self.attn = Attention_block(dim) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True) def forward(self, x): return x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x))) def conv3x3(in_planes, out_planes, stride=1): """3x3 convolution with padding""" return torch.nn.Sequential( nn.Conv2d( in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False ), ) class ConvStem(nn.Module): """ Image to Patch Embedding """ def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) self.img_size = img_size self.patch_size = patch_size self.num_patches = num_patches self.proj = torch.nn.Sequential( conv3x3(3, embed_dim // 8, 2), nn.GELU(), conv3x3(embed_dim // 8, embed_dim // 4, 2), nn.GELU(), conv3x3(embed_dim // 4, embed_dim // 2, 2), nn.GELU(), conv3x3(embed_dim // 2, embed_dim, 2), ) def forward(self, x, padding_size=None): B, C, H, W = x.shape x = self.proj(x).flatten(2).transpose(1, 2) return x class PatchConvnet(nn.Module): def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12, num_heads=1, qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., hybrid_backbone=None, norm_layer=nn.LayerNorm, global_pool=None, block_layers = Layer_scale_init_Block, block_layers_token = Layer_scale_init_Block_only_token, Patch_layer=ConvStem,act_layer=nn.GELU, Attention_block = Conv_blocks_se , dpr_constant=True,init_scale=1e-4, Attention_block_token_only=Learned_Aggregation_Layer, Mlp_block_token_only= Mlp, depth_token_only=1, mlp_ratio_clstk = 3.0): super().__init__() self.patch_size = patch_size self.num_classes = num_classes self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models self.patch_embed = Patch_layer( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) num_patches = self.patch_embed.num_patches self.cls_token = nn.Parameter(torch.zeros(1, 1, int(embed_dim))) if not dpr_constant: dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] else: dpr = [drop_path_rate for i in range(depth)] self.blocks = nn.ModuleList([ block_layers( dim=embed_dim, drop_path=dpr[i], norm_layer=norm_layer, act_layer=act_layer,Attention_block=Attention_block,init_values=init_scale) for i in range(depth)]) self.blocks_token_only = nn.ModuleList([ block_layers_token( dim=int(embed_dim), num_heads=num_heads, mlp_ratio=mlp_ratio_clstk, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=0.0, norm_layer=norm_layer, act_layer=act_layer,Attention_block=Attention_block_token_only, Mlp_block=Mlp_block_token_only,init_values=init_scale) for i in range(depth_token_only)]) self.norm = norm_layer(int(embed_dim)) self.total_len = depth_token_only+depth self.feature_info = [dict(num_chs=int(embed_dim ), reduction=0, module='head')] self.head = nn.Linear(int(embed_dim), num_classes) if num_classes > 0 else nn.Identity() self.rescale = .02 trunc_normal_(self.cls_token, std=self.rescale) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=self.rescale) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) @torch.jit.ignore def no_weight_decay(self): return {'cls_token'} def get_classifier(self): return self.head def get_num_layers(self): return len(self.blocks) def reset_classifier(self, num_classes, global_pool=''): self.num_classes = num_classes self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() def forward_features(self, x): B = x.shape[0] x = self.patch_embed(x) cls_tokens = self.cls_token.expand(B, -1, -1) for i , blk in enumerate(self.blocks): x = blk(x) for i , blk in enumerate(self.blocks_token_only): cls_tokens = blk(x,cls_tokens) x = torch.cat((cls_tokens, x), dim=1) x = self.norm(x) return x[:, 0] def forward(self, x): x = self.forward_features(x) x = self.head(x) return x @register_model def S60(pretrained=False, **kwargs): model = PatchConvnet( patch_size=16, embed_dim=384, depth=60, num_heads=1, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), Patch_layer=ConvStem, Attention_block = Conv_blocks_se, depth_token_only=1, mlp_ratio_clstk=3.0,**kwargs) return model @register_model def S120(pretrained=False, **kwargs): model = PatchConvnet( patch_size=16, embed_dim=384, depth=120, num_heads=1, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), Patch_layer=ConvStem, Attention_block = Conv_blocks_se, init_scale=1e-6, mlp_ratio_clstk=3.0,**kwargs) return model @register_model def B60(pretrained=False, **kwargs): model = PatchConvnet( patch_size=16, embed_dim=768, depth=60, num_heads=1, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), Attention_block = Conv_blocks_se, init_scale=1e-6,**kwargs) return model @register_model def B120(pretrained=False, **kwargs): model = PatchConvnet( patch_size=16, embed_dim=768, depth=120, num_heads=1, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), Patch_layer=ConvStem, Attention_block = Conv_blocks_se, init_scale=1e-6,**kwargs) return model @register_model def L60(pretrained=False, **kwargs): model = PatchConvnet( patch_size=16, embed_dim=1024, depth=60, num_heads=1, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), Patch_layer=ConvStem, Attention_block = Conv_blocks_se, init_scale=1e-6, mlp_ratio_clstk=3.0,**kwargs) return model @register_model def L120(pretrained=False, **kwargs): model = PatchConvnet( patch_size=16, embed_dim=1024, depth=120, num_heads=1, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), Patch_layer=ConvStem, Attention_block = Conv_blocks_se, init_scale=1e-6, mlp_ratio_clstk=3.0,**kwargs) return model