import torch from torch.nn import functional as F class DistillationLoss(torch.nn.Module): """ This module wraps a standard criterion and adds an extra knowledge distillation loss by taking a teacher model prediction and using it as additional supervision. """ def __init__(self, base_criterion: torch.nn.Module, teacher_model: torch.nn.Module, distillation_type: str, alpha: float, tau: float): super().__init__() self.base_criterion = base_criterion self.teacher_model = teacher_model assert distillation_type in ['none', 'soft', 'hard'] self.distillation_type = distillation_type self.alpha = alpha self.tau = tau def forward(self, inputs, outputs, labels): """ Args: inputs: The original inputs that are feed to the teacher model outputs: the outputs of the model to be trained. It is expected to be either a Tensor, or a Tuple[Tensor, Tensor], with the original output in the first position and the distillation predictions as the second output labels: the labels for the base criterion """ outputs_kd = None if not isinstance(outputs, torch.Tensor): # assume that the model outputs a tuple of [outputs, outputs_kd] outputs, outputs_kd = outputs base_loss = self.base_criterion(outputs, labels) if self.distillation_type == 'none': return base_loss if outputs_kd is None: raise ValueError("When knowledge distillation is enabled, the model is " "expected to return a Tuple[Tensor, Tensor] with the output of the " "class_token and the dist_token") # don't backprop throught the teacher with torch.no_grad(): teacher_outputs = self.teacher_model(inputs) if self.distillation_type == 'soft': T = self.tau # taken from https://github.com/peterliht/knowledge-distillation-pytorch/blob/master/model/net.py#L100 # with slight modifications distillation_loss = F.kl_div( F.log_softmax(outputs_kd / T, dim=1), F.log_softmax(teacher_outputs / T, dim=1), reduction='sum', log_target=True ) * (T * T) / outputs_kd.numel() elif self.distillation_type == 'hard': distillation_loss = F.cross_entropy(outputs_kd, teacher_outputs.argmax(dim=1)) loss = base_loss * (1 - self.alpha) + distillation_loss * self.alpha return loss