# Copyright (c) 2015-present, Facebook, Inc. # All rights reserved. import torch import torch.distributed as dist import math class RASampler(torch.utils.data.Sampler): """Sampler that restricts data loading to a subset of the dataset for distributed, with repeated augmentation. It ensures that different each augmented version of a sample will be visible to a different process (GPU) Heavily based on torch.utils.data.DistributedSampler """ def __init__(self, dataset, num_replicas=None, rank=None, shuffle=True, num_repeats: int = 3): if num_replicas is None: if not dist.is_available(): raise RuntimeError("Requires distributed package to be available") num_replicas = dist.get_world_size() if rank is None: if not dist.is_available(): raise RuntimeError("Requires distributed package to be available") rank = dist.get_rank() if num_repeats < 1: raise ValueError("num_repeats should be greater than 0") self.dataset = dataset self.num_replicas = num_replicas self.rank = rank self.num_repeats = num_repeats self.epoch = 0 self.num_samples = int(math.ceil(len(self.dataset) * self.num_repeats / self.num_replicas)) self.total_size = self.num_samples * self.num_replicas # self.num_selected_samples = int(math.ceil(len(self.dataset) / self.num_replicas)) self.num_selected_samples = int(math.floor(len(self.dataset) // 256 * 256 / self.num_replicas)) self.shuffle = shuffle def __iter__(self): if self.shuffle: # deterministically shuffle based on epoch g = torch.Generator() g.manual_seed(self.epoch) indices = torch.randperm(len(self.dataset), generator=g) else: indices = torch.arange(start=0, end=len(self.dataset)) # add extra samples to make it evenly divisible indices = torch.repeat_interleave(indices, repeats=self.num_repeats, dim=0).tolist() padding_size: int = self.total_size - len(indices) if padding_size > 0: indices += indices[:padding_size] assert len(indices) == self.total_size # subsample indices = indices[self.rank:self.total_size:self.num_replicas] assert len(indices) == self.num_samples return iter(indices[:self.num_selected_samples]) def __len__(self): return self.num_selected_samples def set_epoch(self, epoch): self.epoch = epoch