mirror of https://github.com/facebookresearch/deit
490 lines
23 KiB
Python
490 lines
23 KiB
Python
# Copyright (c) 2015-present, Facebook, Inc.
|
|
# All rights reserved.
|
|
import argparse
|
|
import datetime
|
|
import numpy as np
|
|
import time
|
|
import torch
|
|
import torch.backends.cudnn as cudnn
|
|
import json
|
|
|
|
from pathlib import Path
|
|
|
|
from timm.data import Mixup
|
|
from timm.models import create_model
|
|
from timm.loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy
|
|
from timm.scheduler import create_scheduler
|
|
from timm.optim import create_optimizer
|
|
from timm.utils import NativeScaler, get_state_dict, ModelEma
|
|
|
|
from datasets import build_dataset
|
|
from engine import train_one_epoch, evaluate
|
|
from losses import DistillationLoss
|
|
from samplers import RASampler
|
|
from augment import new_data_aug_generator
|
|
|
|
import models
|
|
import models_v2
|
|
|
|
import utils
|
|
|
|
|
|
def get_args_parser():
|
|
parser = argparse.ArgumentParser('DeiT training and evaluation script', add_help=False)
|
|
parser.add_argument('--batch-size', default=64, type=int)
|
|
parser.add_argument('--epochs', default=300, type=int)
|
|
parser.add_argument('--bce-loss', action='store_true')
|
|
parser.add_argument('--unscale-lr', action='store_true')
|
|
|
|
# Model parameters
|
|
parser.add_argument('--model', default='deit_base_patch16_224', type=str, metavar='MODEL',
|
|
help='Name of model to train')
|
|
parser.add_argument('--input-size', default=224, type=int, help='images input size')
|
|
|
|
parser.add_argument('--drop', type=float, default=0.0, metavar='PCT',
|
|
help='Dropout rate (default: 0.)')
|
|
parser.add_argument('--drop-path', type=float, default=0.1, metavar='PCT',
|
|
help='Drop path rate (default: 0.1)')
|
|
|
|
parser.add_argument('--model-ema', action='store_true')
|
|
parser.add_argument('--no-model-ema', action='store_false', dest='model_ema')
|
|
parser.set_defaults(model_ema=True)
|
|
parser.add_argument('--model-ema-decay', type=float, default=0.99996, help='')
|
|
parser.add_argument('--model-ema-force-cpu', action='store_true', default=False, help='')
|
|
|
|
# Optimizer parameters
|
|
parser.add_argument('--opt', default='adamw', type=str, metavar='OPTIMIZER',
|
|
help='Optimizer (default: "adamw"')
|
|
parser.add_argument('--opt-eps', default=1e-8, type=float, metavar='EPSILON',
|
|
help='Optimizer Epsilon (default: 1e-8)')
|
|
parser.add_argument('--opt-betas', default=None, type=float, nargs='+', metavar='BETA',
|
|
help='Optimizer Betas (default: None, use opt default)')
|
|
parser.add_argument('--clip-grad', type=float, default=None, metavar='NORM',
|
|
help='Clip gradient norm (default: None, no clipping)')
|
|
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
|
|
help='SGD momentum (default: 0.9)')
|
|
parser.add_argument('--weight-decay', type=float, default=0.05,
|
|
help='weight decay (default: 0.05)')
|
|
# Learning rate schedule parameters
|
|
parser.add_argument('--sched', default='cosine', type=str, metavar='SCHEDULER',
|
|
help='LR scheduler (default: "cosine"')
|
|
parser.add_argument('--lr', type=float, default=5e-4, metavar='LR',
|
|
help='learning rate (default: 5e-4)')
|
|
parser.add_argument('--lr-noise', type=float, nargs='+', default=None, metavar='pct, pct',
|
|
help='learning rate noise on/off epoch percentages')
|
|
parser.add_argument('--lr-noise-pct', type=float, default=0.67, metavar='PERCENT',
|
|
help='learning rate noise limit percent (default: 0.67)')
|
|
parser.add_argument('--lr-noise-std', type=float, default=1.0, metavar='STDDEV',
|
|
help='learning rate noise std-dev (default: 1.0)')
|
|
parser.add_argument('--warmup-lr', type=float, default=1e-6, metavar='LR',
|
|
help='warmup learning rate (default: 1e-6)')
|
|
parser.add_argument('--min-lr', type=float, default=1e-5, metavar='LR',
|
|
help='lower lr bound for cyclic schedulers that hit 0 (1e-5)')
|
|
|
|
parser.add_argument('--decay-epochs', type=float, default=30, metavar='N',
|
|
help='epoch interval to decay LR')
|
|
parser.add_argument('--warmup-epochs', type=int, default=5, metavar='N',
|
|
help='epochs to warmup LR, if scheduler supports')
|
|
parser.add_argument('--cooldown-epochs', type=int, default=10, metavar='N',
|
|
help='epochs to cooldown LR at min_lr, after cyclic schedule ends')
|
|
parser.add_argument('--patience-epochs', type=int, default=10, metavar='N',
|
|
help='patience epochs for Plateau LR scheduler (default: 10')
|
|
parser.add_argument('--decay-rate', '--dr', type=float, default=0.1, metavar='RATE',
|
|
help='LR decay rate (default: 0.1)')
|
|
|
|
# Augmentation parameters
|
|
parser.add_argument('--color-jitter', type=float, default=0.3, metavar='PCT',
|
|
help='Color jitter factor (default: 0.3)')
|
|
parser.add_argument('--aa', type=str, default='rand-m9-mstd0.5-inc1', metavar='NAME',
|
|
help='Use AutoAugment policy. "v0" or "original". " + \
|
|
"(default: rand-m9-mstd0.5-inc1)'),
|
|
parser.add_argument('--smoothing', type=float, default=0.1, help='Label smoothing (default: 0.1)')
|
|
parser.add_argument('--train-interpolation', type=str, default='bicubic',
|
|
help='Training interpolation (random, bilinear, bicubic default: "bicubic")')
|
|
|
|
parser.add_argument('--repeated-aug', action='store_true')
|
|
parser.add_argument('--no-repeated-aug', action='store_false', dest='repeated_aug')
|
|
parser.set_defaults(repeated_aug=True)
|
|
|
|
parser.add_argument('--train-mode', action='store_true')
|
|
parser.add_argument('--no-train-mode', action='store_false', dest='train_mode')
|
|
parser.set_defaults(train_mode=True)
|
|
|
|
parser.add_argument('--ThreeAugment', action='store_true') #3augment
|
|
|
|
parser.add_argument('--src', action='store_true') #simple random crop
|
|
|
|
# * Random Erase params
|
|
parser.add_argument('--reprob', type=float, default=0.25, metavar='PCT',
|
|
help='Random erase prob (default: 0.25)')
|
|
parser.add_argument('--remode', type=str, default='pixel',
|
|
help='Random erase mode (default: "pixel")')
|
|
parser.add_argument('--recount', type=int, default=1,
|
|
help='Random erase count (default: 1)')
|
|
parser.add_argument('--resplit', action='store_true', default=False,
|
|
help='Do not random erase first (clean) augmentation split')
|
|
|
|
# * Mixup params
|
|
parser.add_argument('--mixup', type=float, default=0.8,
|
|
help='mixup alpha, mixup enabled if > 0. (default: 0.8)')
|
|
parser.add_argument('--cutmix', type=float, default=1.0,
|
|
help='cutmix alpha, cutmix enabled if > 0. (default: 1.0)')
|
|
parser.add_argument('--cutmix-minmax', type=float, nargs='+', default=None,
|
|
help='cutmix min/max ratio, overrides alpha and enables cutmix if set (default: None)')
|
|
parser.add_argument('--mixup-prob', type=float, default=1.0,
|
|
help='Probability of performing mixup or cutmix when either/both is enabled')
|
|
parser.add_argument('--mixup-switch-prob', type=float, default=0.5,
|
|
help='Probability of switching to cutmix when both mixup and cutmix enabled')
|
|
parser.add_argument('--mixup-mode', type=str, default='batch',
|
|
help='How to apply mixup/cutmix params. Per "batch", "pair", or "elem"')
|
|
|
|
# Distillation parameters
|
|
parser.add_argument('--teacher-model', default='regnety_160', type=str, metavar='MODEL',
|
|
help='Name of teacher model to train (default: "regnety_160"')
|
|
parser.add_argument('--teacher-path', type=str, default='')
|
|
parser.add_argument('--distillation-type', default='none', choices=['none', 'soft', 'hard'], type=str, help="")
|
|
parser.add_argument('--distillation-alpha', default=0.5, type=float, help="")
|
|
parser.add_argument('--distillation-tau', default=1.0, type=float, help="")
|
|
|
|
# * Cosub params
|
|
parser.add_argument('--cosub', action='store_true')
|
|
|
|
# * Finetuning params
|
|
parser.add_argument('--finetune', default='', help='finetune from checkpoint')
|
|
parser.add_argument('--attn-only', action='store_true')
|
|
|
|
# Dataset parameters
|
|
parser.add_argument('--data-path', default='/datasets01/imagenet_full_size/061417/', type=str,
|
|
help='dataset path')
|
|
parser.add_argument('--data-set', default='IMNET', choices=['CIFAR', 'IMNET', 'INAT', 'INAT19'],
|
|
type=str, help='Image Net dataset path')
|
|
parser.add_argument('--inat-category', default='name',
|
|
choices=['kingdom', 'phylum', 'class', 'order', 'supercategory', 'family', 'genus', 'name'],
|
|
type=str, help='semantic granularity')
|
|
|
|
parser.add_argument('--output_dir', default='',
|
|
help='path where to save, empty for no saving')
|
|
parser.add_argument('--device', default='cuda',
|
|
help='device to use for training / testing')
|
|
parser.add_argument('--seed', default=0, type=int)
|
|
parser.add_argument('--resume', default='', help='resume from checkpoint')
|
|
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
|
|
help='start epoch')
|
|
parser.add_argument('--eval', action='store_true', help='Perform evaluation only')
|
|
parser.add_argument('--eval-crop-ratio', default=0.875, type=float, help="Crop ratio for evaluation")
|
|
parser.add_argument('--dist-eval', action='store_true', default=False, help='Enabling distributed evaluation')
|
|
parser.add_argument('--num_workers', default=10, type=int)
|
|
parser.add_argument('--pin-mem', action='store_true',
|
|
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
|
|
parser.add_argument('--no-pin-mem', action='store_false', dest='pin_mem',
|
|
help='')
|
|
parser.set_defaults(pin_mem=True)
|
|
|
|
# distributed training parameters
|
|
parser.add_argument('--distributed', action='store_true', default=False, help='Enabling distributed training')
|
|
parser.add_argument('--world_size', default=1, type=int,
|
|
help='number of distributed processes')
|
|
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
|
|
return parser
|
|
|
|
|
|
def main(args):
|
|
utils.init_distributed_mode(args)
|
|
|
|
print(args)
|
|
|
|
if args.distillation_type != 'none' and args.finetune and not args.eval:
|
|
raise NotImplementedError("Finetuning with distillation not yet supported")
|
|
|
|
device = torch.device(args.device)
|
|
|
|
# fix the seed for reproducibility
|
|
seed = args.seed + utils.get_rank()
|
|
torch.manual_seed(seed)
|
|
np.random.seed(seed)
|
|
# random.seed(seed)
|
|
|
|
cudnn.benchmark = True
|
|
|
|
dataset_train, args.nb_classes = build_dataset(is_train=True, args=args)
|
|
dataset_val, _ = build_dataset(is_train=False, args=args)
|
|
|
|
if args.distributed:
|
|
num_tasks = utils.get_world_size()
|
|
global_rank = utils.get_rank()
|
|
if args.repeated_aug:
|
|
sampler_train = RASampler(
|
|
dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True
|
|
)
|
|
else:
|
|
sampler_train = torch.utils.data.DistributedSampler(
|
|
dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True
|
|
)
|
|
if args.dist_eval:
|
|
if len(dataset_val) % num_tasks != 0:
|
|
print('Warning: Enabling distributed evaluation with an eval dataset not divisible by process number. '
|
|
'This will slightly alter validation results as extra duplicate entries are added to achieve '
|
|
'equal num of samples per-process.')
|
|
sampler_val = torch.utils.data.DistributedSampler(
|
|
dataset_val, num_replicas=num_tasks, rank=global_rank, shuffle=False)
|
|
else:
|
|
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
|
|
else:
|
|
sampler_train = torch.utils.data.RandomSampler(dataset_train)
|
|
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
|
|
|
|
data_loader_train = torch.utils.data.DataLoader(
|
|
dataset_train, sampler=sampler_train,
|
|
batch_size=args.batch_size,
|
|
num_workers=args.num_workers,
|
|
pin_memory=args.pin_mem,
|
|
drop_last=True,
|
|
)
|
|
if args.ThreeAugment:
|
|
data_loader_train.dataset.transform = new_data_aug_generator(args)
|
|
|
|
data_loader_val = torch.utils.data.DataLoader(
|
|
dataset_val, sampler=sampler_val,
|
|
batch_size=int(1.5 * args.batch_size),
|
|
num_workers=args.num_workers,
|
|
pin_memory=args.pin_mem,
|
|
drop_last=False
|
|
)
|
|
|
|
mixup_fn = None
|
|
mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None
|
|
if mixup_active:
|
|
mixup_fn = Mixup(
|
|
mixup_alpha=args.mixup, cutmix_alpha=args.cutmix, cutmix_minmax=args.cutmix_minmax,
|
|
prob=args.mixup_prob, switch_prob=args.mixup_switch_prob, mode=args.mixup_mode,
|
|
label_smoothing=args.smoothing, num_classes=args.nb_classes)
|
|
|
|
print(f"Creating model: {args.model}")
|
|
model = create_model(
|
|
args.model,
|
|
pretrained=False,
|
|
num_classes=args.nb_classes,
|
|
drop_rate=args.drop,
|
|
drop_path_rate=args.drop_path,
|
|
drop_block_rate=None,
|
|
img_size=args.input_size
|
|
)
|
|
|
|
|
|
if args.finetune:
|
|
if args.finetune.startswith('https'):
|
|
checkpoint = torch.hub.load_state_dict_from_url(
|
|
args.finetune, map_location='cpu', check_hash=True)
|
|
else:
|
|
checkpoint = torch.load(args.finetune, map_location='cpu')
|
|
|
|
checkpoint_model = checkpoint['model']
|
|
state_dict = model.state_dict()
|
|
for k in ['head.weight', 'head.bias', 'head_dist.weight', 'head_dist.bias']:
|
|
if k in checkpoint_model and checkpoint_model[k].shape != state_dict[k].shape:
|
|
print(f"Removing key {k} from pretrained checkpoint")
|
|
del checkpoint_model[k]
|
|
|
|
# interpolate position embedding
|
|
pos_embed_checkpoint = checkpoint_model['pos_embed']
|
|
embedding_size = pos_embed_checkpoint.shape[-1]
|
|
num_patches = model.patch_embed.num_patches
|
|
num_extra_tokens = model.pos_embed.shape[-2] - num_patches
|
|
# height (== width) for the checkpoint position embedding
|
|
orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
|
|
# height (== width) for the new position embedding
|
|
new_size = int(num_patches ** 0.5)
|
|
# class_token and dist_token are kept unchanged
|
|
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
|
|
# only the position tokens are interpolated
|
|
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
|
|
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
|
|
pos_tokens = torch.nn.functional.interpolate(
|
|
pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
|
|
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
|
|
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
|
|
checkpoint_model['pos_embed'] = new_pos_embed
|
|
|
|
model.load_state_dict(checkpoint_model, strict=False)
|
|
|
|
if args.attn_only:
|
|
for name_p,p in model.named_parameters():
|
|
if '.attn.' in name_p:
|
|
p.requires_grad = True
|
|
else:
|
|
p.requires_grad = False
|
|
try:
|
|
model.head.weight.requires_grad = True
|
|
model.head.bias.requires_grad = True
|
|
except:
|
|
model.fc.weight.requires_grad = True
|
|
model.fc.bias.requires_grad = True
|
|
try:
|
|
model.pos_embed.requires_grad = True
|
|
except:
|
|
print('no position encoding')
|
|
try:
|
|
for p in model.patch_embed.parameters():
|
|
p.requires_grad = False
|
|
except:
|
|
print('no patch embed')
|
|
|
|
model.to(device)
|
|
|
|
model_ema = None
|
|
if args.model_ema:
|
|
# Important to create EMA model after cuda(), DP wrapper, and AMP but before SyncBN and DDP wrapper
|
|
model_ema = ModelEma(
|
|
model,
|
|
decay=args.model_ema_decay,
|
|
device='cpu' if args.model_ema_force_cpu else '',
|
|
resume='')
|
|
|
|
model_without_ddp = model
|
|
if args.distributed:
|
|
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
|
|
model_without_ddp = model.module
|
|
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
|
|
print('number of params:', n_parameters)
|
|
if not args.unscale_lr:
|
|
linear_scaled_lr = args.lr * args.batch_size * utils.get_world_size() / 512.0
|
|
args.lr = linear_scaled_lr
|
|
optimizer = create_optimizer(args, model_without_ddp)
|
|
loss_scaler = NativeScaler()
|
|
|
|
lr_scheduler, _ = create_scheduler(args, optimizer)
|
|
|
|
criterion = LabelSmoothingCrossEntropy()
|
|
|
|
if mixup_active:
|
|
# smoothing is handled with mixup label transform
|
|
criterion = SoftTargetCrossEntropy()
|
|
elif args.smoothing:
|
|
criterion = LabelSmoothingCrossEntropy(smoothing=args.smoothing)
|
|
else:
|
|
criterion = torch.nn.CrossEntropyLoss()
|
|
|
|
if args.bce_loss:
|
|
criterion = torch.nn.BCEWithLogitsLoss()
|
|
|
|
teacher_model = None
|
|
if args.distillation_type != 'none':
|
|
assert args.teacher_path, 'need to specify teacher-path when using distillation'
|
|
print(f"Creating teacher model: {args.teacher_model}")
|
|
teacher_model = create_model(
|
|
args.teacher_model,
|
|
pretrained=False,
|
|
num_classes=args.nb_classes,
|
|
global_pool='avg',
|
|
)
|
|
if args.teacher_path.startswith('https'):
|
|
checkpoint = torch.hub.load_state_dict_from_url(
|
|
args.teacher_path, map_location='cpu', check_hash=True)
|
|
else:
|
|
checkpoint = torch.load(args.teacher_path, map_location='cpu')
|
|
teacher_model.load_state_dict(checkpoint['model'])
|
|
teacher_model.to(device)
|
|
teacher_model.eval()
|
|
|
|
# wrap the criterion in our custom DistillationLoss, which
|
|
# just dispatches to the original criterion if args.distillation_type is 'none'
|
|
criterion = DistillationLoss(
|
|
criterion, teacher_model, args.distillation_type, args.distillation_alpha, args.distillation_tau
|
|
)
|
|
|
|
output_dir = Path(args.output_dir)
|
|
if args.resume:
|
|
if args.resume.startswith('https'):
|
|
checkpoint = torch.hub.load_state_dict_from_url(
|
|
args.resume, map_location='cpu', check_hash=True)
|
|
else:
|
|
checkpoint = torch.load(args.resume, map_location='cpu')
|
|
model_without_ddp.load_state_dict(checkpoint['model'])
|
|
if not args.eval and 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint:
|
|
optimizer.load_state_dict(checkpoint['optimizer'])
|
|
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
|
|
args.start_epoch = checkpoint['epoch'] + 1
|
|
if args.model_ema:
|
|
utils._load_checkpoint_for_ema(model_ema, checkpoint['model_ema'])
|
|
if 'scaler' in checkpoint:
|
|
loss_scaler.load_state_dict(checkpoint['scaler'])
|
|
lr_scheduler.step(args.start_epoch)
|
|
if args.eval:
|
|
test_stats = evaluate(data_loader_val, model, device)
|
|
print(f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%")
|
|
return
|
|
|
|
print(f"Start training for {args.epochs} epochs")
|
|
start_time = time.time()
|
|
max_accuracy = 0.0
|
|
for epoch in range(args.start_epoch, args.epochs):
|
|
if args.distributed:
|
|
data_loader_train.sampler.set_epoch(epoch)
|
|
|
|
train_stats = train_one_epoch(
|
|
model, criterion, data_loader_train,
|
|
optimizer, device, epoch, loss_scaler,
|
|
args.clip_grad, model_ema, mixup_fn,
|
|
set_training_mode=args.train_mode, # keep in eval mode for deit finetuning / train mode for training and deit III finetuning
|
|
args = args,
|
|
)
|
|
|
|
lr_scheduler.step(epoch)
|
|
if args.output_dir:
|
|
checkpoint_paths = [output_dir / 'checkpoint.pth']
|
|
for checkpoint_path in checkpoint_paths:
|
|
utils.save_on_master({
|
|
'model': model_without_ddp.state_dict(),
|
|
'optimizer': optimizer.state_dict(),
|
|
'lr_scheduler': lr_scheduler.state_dict(),
|
|
'epoch': epoch,
|
|
'model_ema': get_state_dict(model_ema),
|
|
'scaler': loss_scaler.state_dict(),
|
|
'args': args,
|
|
}, checkpoint_path)
|
|
|
|
|
|
test_stats = evaluate(data_loader_val, model, device)
|
|
print(f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%")
|
|
|
|
if max_accuracy < test_stats["acc1"]:
|
|
max_accuracy = test_stats["acc1"]
|
|
if args.output_dir:
|
|
checkpoint_paths = [output_dir / 'best_checkpoint.pth']
|
|
for checkpoint_path in checkpoint_paths:
|
|
utils.save_on_master({
|
|
'model': model_without_ddp.state_dict(),
|
|
'optimizer': optimizer.state_dict(),
|
|
'lr_scheduler': lr_scheduler.state_dict(),
|
|
'epoch': epoch,
|
|
'model_ema': get_state_dict(model_ema),
|
|
'scaler': loss_scaler.state_dict(),
|
|
'args': args,
|
|
}, checkpoint_path)
|
|
|
|
print(f'Max accuracy: {max_accuracy:.2f}%')
|
|
|
|
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
|
|
**{f'test_{k}': v for k, v in test_stats.items()},
|
|
'epoch': epoch,
|
|
'n_parameters': n_parameters}
|
|
|
|
|
|
|
|
|
|
if args.output_dir and utils.is_main_process():
|
|
with (output_dir / "log.txt").open("a") as f:
|
|
f.write(json.dumps(log_stats) + "\n")
|
|
|
|
total_time = time.time() - start_time
|
|
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
|
|
print('Training time {}'.format(total_time_str))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser('DeiT training and evaluation script', parents=[get_args_parser()])
|
|
args = parser.parse_args()
|
|
if args.output_dir:
|
|
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
|
|
main(args)
|