mirror of https://github.com/facebookresearch/deit
480 lines
18 KiB
Python
480 lines
18 KiB
Python
# Copyright (c) 2015-present, Facebook, Inc.
|
|
# All rights reserved.
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from functools import partial
|
|
|
|
from timm.models.vision_transformer import Mlp, PatchEmbed , _cfg
|
|
from timm.models.registry import register_model
|
|
from timm.models.layers import trunc_normal_, DropPath
|
|
|
|
|
|
__all__ = [
|
|
'cait_M48', 'cait_M36',
|
|
'cait_S36', 'cait_S24','cait_S24_224',
|
|
'cait_XS24','cait_XXS24','cait_XXS24_224',
|
|
'cait_XXS36','cait_XXS36_224'
|
|
]
|
|
|
|
class Class_Attention(nn.Module):
|
|
# taken from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
|
|
# with slight modifications to do CA
|
|
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
|
|
super().__init__()
|
|
self.num_heads = num_heads
|
|
head_dim = dim // num_heads
|
|
self.scale = qk_scale or head_dim ** -0.5
|
|
|
|
self.q = nn.Linear(dim, dim, bias=qkv_bias)
|
|
self.k = nn.Linear(dim, dim, bias=qkv_bias)
|
|
self.v = nn.Linear(dim, dim, bias=qkv_bias)
|
|
self.attn_drop = nn.Dropout(attn_drop)
|
|
self.proj = nn.Linear(dim, dim)
|
|
self.proj_drop = nn.Dropout(proj_drop)
|
|
|
|
|
|
def forward(self, x ):
|
|
|
|
B, N, C = x.shape
|
|
q = self.q(x[:,0]).unsqueeze(1).reshape(B, 1, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
|
|
k = self.k(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
|
|
|
|
q = q * self.scale
|
|
v = self.v(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
|
|
|
|
attn = (q @ k.transpose(-2, -1))
|
|
attn = attn.softmax(dim=-1)
|
|
attn = self.attn_drop(attn)
|
|
|
|
x_cls = (attn @ v).transpose(1, 2).reshape(B, 1, C)
|
|
x_cls = self.proj(x_cls)
|
|
x_cls = self.proj_drop(x_cls)
|
|
|
|
return x_cls
|
|
|
|
class LayerScale_Block_CA(nn.Module):
|
|
# taken from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
|
|
# with slight modifications to add CA and LayerScale
|
|
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
|
|
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, Attention_block = Class_Attention,
|
|
Mlp_block=Mlp,init_values=1e-4):
|
|
super().__init__()
|
|
self.norm1 = norm_layer(dim)
|
|
self.attn = Attention_block(
|
|
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
|
self.norm2 = norm_layer(dim)
|
|
mlp_hidden_dim = int(dim * mlp_ratio)
|
|
self.mlp = Mlp_block(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
|
self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True)
|
|
self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True)
|
|
|
|
|
|
def forward(self, x, x_cls):
|
|
|
|
u = torch.cat((x_cls,x),dim=1)
|
|
|
|
|
|
x_cls = x_cls + self.drop_path(self.gamma_1 * self.attn(self.norm1(u)))
|
|
|
|
x_cls = x_cls + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x_cls)))
|
|
|
|
return x_cls
|
|
|
|
|
|
class Attention_talking_head(nn.Module):
|
|
# taken from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
|
|
# with slight modifications to add Talking Heads Attention (https://arxiv.org/pdf/2003.02436v1.pdf)
|
|
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
|
|
super().__init__()
|
|
|
|
self.num_heads = num_heads
|
|
|
|
head_dim = dim // num_heads
|
|
|
|
self.scale = qk_scale or head_dim ** -0.5
|
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
|
self.attn_drop = nn.Dropout(attn_drop)
|
|
|
|
self.proj = nn.Linear(dim, dim)
|
|
|
|
self.proj_l = nn.Linear(num_heads, num_heads)
|
|
self.proj_w = nn.Linear(num_heads, num_heads)
|
|
|
|
self.proj_drop = nn.Dropout(proj_drop)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
B, N, C = x.shape
|
|
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
|
q, k, v = qkv[0] * self.scale , qkv[1], qkv[2]
|
|
|
|
attn = (q @ k.transpose(-2, -1))
|
|
|
|
attn = self.proj_l(attn.permute(0,2,3,1)).permute(0,3,1,2)
|
|
|
|
attn = attn.softmax(dim=-1)
|
|
|
|
attn = self.proj_w(attn.permute(0,2,3,1)).permute(0,3,1,2)
|
|
attn = self.attn_drop(attn)
|
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
|
x = self.proj(x)
|
|
x = self.proj_drop(x)
|
|
return x
|
|
|
|
class LayerScale_Block(nn.Module):
|
|
# taken from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
|
|
# with slight modifications to add layerScale
|
|
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
|
|
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm,Attention_block = Attention_talking_head,
|
|
Mlp_block=Mlp,init_values=1e-4):
|
|
super().__init__()
|
|
self.norm1 = norm_layer(dim)
|
|
self.attn = Attention_block(
|
|
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
|
self.norm2 = norm_layer(dim)
|
|
mlp_hidden_dim = int(dim * mlp_ratio)
|
|
self.mlp = Mlp_block(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
|
self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True)
|
|
self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True)
|
|
|
|
def forward(self, x):
|
|
x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x)))
|
|
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
|
|
return x
|
|
|
|
|
|
|
|
|
|
class cait_models(nn.Module):
|
|
# taken from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
|
|
# with slight modifications to adapt to our cait models
|
|
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12,
|
|
num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0.,
|
|
drop_path_rate=0., norm_layer=nn.LayerNorm, global_pool=None,
|
|
block_layers = LayerScale_Block,
|
|
block_layers_token = LayerScale_Block_CA,
|
|
Patch_layer=PatchEmbed,act_layer=nn.GELU,
|
|
Attention_block = Attention_talking_head,Mlp_block=Mlp,
|
|
init_scale=1e-4,
|
|
Attention_block_token_only=Class_Attention,
|
|
Mlp_block_token_only= Mlp,
|
|
depth_token_only=2,
|
|
mlp_ratio_clstk = 4.0):
|
|
super().__init__()
|
|
|
|
|
|
|
|
self.num_classes = num_classes
|
|
self.num_features = self.embed_dim = embed_dim
|
|
|
|
self.patch_embed = Patch_layer(
|
|
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
|
|
|
|
num_patches = self.patch_embed.num_patches
|
|
|
|
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
|
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
|
|
self.pos_drop = nn.Dropout(p=drop_rate)
|
|
|
|
dpr = [drop_path_rate for i in range(depth)]
|
|
self.blocks = nn.ModuleList([
|
|
block_layers(
|
|
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
|
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
|
|
act_layer=act_layer,Attention_block=Attention_block,Mlp_block=Mlp_block,init_values=init_scale)
|
|
for i in range(depth)])
|
|
|
|
|
|
self.blocks_token_only = nn.ModuleList([
|
|
block_layers_token(
|
|
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio_clstk, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
|
drop=0.0, attn_drop=0.0, drop_path=0.0, norm_layer=norm_layer,
|
|
act_layer=act_layer,Attention_block=Attention_block_token_only,
|
|
Mlp_block=Mlp_block_token_only,init_values=init_scale)
|
|
for i in range(depth_token_only)])
|
|
|
|
self.norm = norm_layer(embed_dim)
|
|
|
|
|
|
self.feature_info = [dict(num_chs=embed_dim, reduction=0, module='head')]
|
|
self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()
|
|
|
|
trunc_normal_(self.pos_embed, std=.02)
|
|
trunc_normal_(self.cls_token, std=.02)
|
|
self.apply(self._init_weights)
|
|
|
|
def _init_weights(self, m):
|
|
if isinstance(m, nn.Linear):
|
|
trunc_normal_(m.weight, std=.02)
|
|
if isinstance(m, nn.Linear) and m.bias is not None:
|
|
nn.init.constant_(m.bias, 0)
|
|
elif isinstance(m, nn.LayerNorm):
|
|
nn.init.constant_(m.bias, 0)
|
|
nn.init.constant_(m.weight, 1.0)
|
|
|
|
@torch.jit.ignore
|
|
def no_weight_decay(self):
|
|
return {'pos_embed', 'cls_token'}
|
|
|
|
|
|
def forward_features(self, x):
|
|
B = x.shape[0]
|
|
x = self.patch_embed(x)
|
|
|
|
cls_tokens = self.cls_token.expand(B, -1, -1)
|
|
|
|
x = x + self.pos_embed
|
|
x = self.pos_drop(x)
|
|
|
|
for i , blk in enumerate(self.blocks):
|
|
x = blk(x)
|
|
|
|
for i , blk in enumerate(self.blocks_token_only):
|
|
cls_tokens = blk(x,cls_tokens)
|
|
|
|
x = torch.cat((cls_tokens, x), dim=1)
|
|
|
|
|
|
x = self.norm(x)
|
|
return x[:, 0]
|
|
|
|
def forward(self, x):
|
|
x = self.forward_features(x)
|
|
|
|
x = self.head(x)
|
|
|
|
return x
|
|
|
|
@register_model
|
|
def cait_XXS24_224(pretrained=False, **kwargs):
|
|
model = cait_models(
|
|
img_size= 224,patch_size=16, embed_dim=192, depth=24, num_heads=4, mlp_ratio=4, qkv_bias=True,
|
|
norm_layer=partial(nn.LayerNorm, eps=1e-6),
|
|
init_scale=1e-5,
|
|
depth_token_only=2,**kwargs)
|
|
|
|
model.default_cfg = _cfg()
|
|
if pretrained:
|
|
checkpoint = torch.hub.load_state_dict_from_url(
|
|
url="https://dl.fbaipublicfiles.com/deit/XXS24_224.pth",
|
|
map_location="cpu", check_hash=True
|
|
)
|
|
checkpoint_no_module = {}
|
|
for k in model.state_dict().keys():
|
|
checkpoint_no_module[k] = checkpoint["model"]['module.'+k]
|
|
|
|
model.load_state_dict(checkpoint_no_module)
|
|
|
|
return model
|
|
|
|
@register_model
|
|
def cait_XXS24(pretrained=False, **kwargs):
|
|
model = cait_models(
|
|
img_size= 384,patch_size=16, embed_dim=192, depth=24, num_heads=4, mlp_ratio=4, qkv_bias=True,
|
|
norm_layer=partial(nn.LayerNorm, eps=1e-6),
|
|
init_scale=1e-5,
|
|
depth_token_only=2,**kwargs)
|
|
|
|
model.default_cfg = _cfg()
|
|
if pretrained:
|
|
checkpoint = torch.hub.load_state_dict_from_url(
|
|
url="https://dl.fbaipublicfiles.com/deit/XXS24_384.pth",
|
|
map_location="cpu", check_hash=True
|
|
)
|
|
checkpoint_no_module = {}
|
|
for k in model.state_dict().keys():
|
|
checkpoint_no_module[k] = checkpoint["model"]['module.'+k]
|
|
|
|
model.load_state_dict(checkpoint_no_module)
|
|
|
|
return model
|
|
@register_model
|
|
def cait_XXS36_224(pretrained=False, **kwargs):
|
|
model = cait_models(
|
|
img_size= 224,patch_size=16, embed_dim=192, depth=36, num_heads=4, mlp_ratio=4, qkv_bias=True,
|
|
norm_layer=partial(nn.LayerNorm, eps=1e-6),
|
|
init_scale=1e-5,
|
|
depth_token_only=2,**kwargs)
|
|
|
|
model.default_cfg = _cfg()
|
|
if pretrained:
|
|
checkpoint = torch.hub.load_state_dict_from_url(
|
|
url="https://dl.fbaipublicfiles.com/deit/XXS36_224.pth",
|
|
map_location="cpu", check_hash=True
|
|
)
|
|
checkpoint_no_module = {}
|
|
for k in model.state_dict().keys():
|
|
checkpoint_no_module[k] = checkpoint["model"]['module.'+k]
|
|
|
|
model.load_state_dict(checkpoint_no_module)
|
|
|
|
return model
|
|
|
|
@register_model
|
|
def cait_XXS36(pretrained=False, **kwargs):
|
|
model = cait_models(
|
|
img_size= 384,patch_size=16, embed_dim=192, depth=36, num_heads=4, mlp_ratio=4, qkv_bias=True,
|
|
norm_layer=partial(nn.LayerNorm, eps=1e-6),
|
|
init_scale=1e-5,
|
|
depth_token_only=2,**kwargs)
|
|
|
|
model.default_cfg = _cfg()
|
|
if pretrained:
|
|
checkpoint = torch.hub.load_state_dict_from_url(
|
|
url="https://dl.fbaipublicfiles.com/deit/XXS36_384.pth",
|
|
map_location="cpu", check_hash=True
|
|
)
|
|
checkpoint_no_module = {}
|
|
for k in model.state_dict().keys():
|
|
checkpoint_no_module[k] = checkpoint["model"]['module.'+k]
|
|
|
|
model.load_state_dict(checkpoint_no_module)
|
|
|
|
return model
|
|
|
|
@register_model
|
|
def cait_XS24(pretrained=False, **kwargs):
|
|
model = cait_models(
|
|
img_size= 384,patch_size=16, embed_dim=288, depth=24, num_heads=6, mlp_ratio=4, qkv_bias=True,
|
|
norm_layer=partial(nn.LayerNorm, eps=1e-6),
|
|
init_scale=1e-5,
|
|
depth_token_only=2,**kwargs)
|
|
|
|
model.default_cfg = _cfg()
|
|
if pretrained:
|
|
checkpoint = torch.hub.load_state_dict_from_url(
|
|
url="https://dl.fbaipublicfiles.com/deit/XS24_384.pth",
|
|
map_location="cpu", check_hash=True
|
|
)
|
|
checkpoint_no_module = {}
|
|
for k in model.state_dict().keys():
|
|
checkpoint_no_module[k] = checkpoint["model"]['module.'+k]
|
|
|
|
model.load_state_dict(checkpoint_no_module)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
def cait_S24_224(pretrained=False, **kwargs):
|
|
model = cait_models(
|
|
img_size= 224,patch_size=16, embed_dim=384, depth=24, num_heads=8, mlp_ratio=4, qkv_bias=True,
|
|
norm_layer=partial(nn.LayerNorm, eps=1e-6),
|
|
init_scale=1e-5,
|
|
depth_token_only=2,**kwargs)
|
|
|
|
model.default_cfg = _cfg()
|
|
if pretrained:
|
|
checkpoint = torch.hub.load_state_dict_from_url(
|
|
url="https://dl.fbaipublicfiles.com/deit/S24_224.pth",
|
|
map_location="cpu", check_hash=True
|
|
)
|
|
checkpoint_no_module = {}
|
|
for k in model.state_dict().keys():
|
|
checkpoint_no_module[k] = checkpoint["model"]['module.'+k]
|
|
|
|
model.load_state_dict(checkpoint_no_module)
|
|
|
|
return model
|
|
|
|
@register_model
|
|
def cait_S24(pretrained=False, **kwargs):
|
|
model = cait_models(
|
|
img_size= 384,patch_size=16, embed_dim=384, depth=24, num_heads=8, mlp_ratio=4, qkv_bias=True,
|
|
norm_layer=partial(nn.LayerNorm, eps=1e-6),
|
|
init_scale=1e-5,
|
|
depth_token_only=2,**kwargs)
|
|
|
|
model.default_cfg = _cfg()
|
|
if pretrained:
|
|
checkpoint = torch.hub.load_state_dict_from_url(
|
|
url="https://dl.fbaipublicfiles.com/deit/S24_384.pth",
|
|
map_location="cpu", check_hash=True
|
|
)
|
|
checkpoint_no_module = {}
|
|
for k in model.state_dict().keys():
|
|
checkpoint_no_module[k] = checkpoint["model"]['module.'+k]
|
|
|
|
model.load_state_dict(checkpoint_no_module)
|
|
|
|
return model
|
|
|
|
@register_model
|
|
def cait_S36(pretrained=False, **kwargs):
|
|
model = cait_models(
|
|
img_size= 384,patch_size=16, embed_dim=384, depth=36, num_heads=8, mlp_ratio=4, qkv_bias=True,
|
|
norm_layer=partial(nn.LayerNorm, eps=1e-6),
|
|
init_scale=1e-6,
|
|
depth_token_only=2,**kwargs)
|
|
|
|
model.default_cfg = _cfg()
|
|
if pretrained:
|
|
checkpoint = torch.hub.load_state_dict_from_url(
|
|
url="https://dl.fbaipublicfiles.com/deit/S36_384.pth",
|
|
map_location="cpu", check_hash=True
|
|
)
|
|
checkpoint_no_module = {}
|
|
for k in model.state_dict().keys():
|
|
checkpoint_no_module[k] = checkpoint["model"]['module.'+k]
|
|
|
|
model.load_state_dict(checkpoint_no_module)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
def cait_M36(pretrained=False, **kwargs):
|
|
model = cait_models(
|
|
img_size= 384, patch_size=16, embed_dim=768, depth=36, num_heads=16, mlp_ratio=4, qkv_bias=True,
|
|
norm_layer=partial(nn.LayerNorm, eps=1e-6),
|
|
init_scale=1e-6,
|
|
depth_token_only=2,**kwargs)
|
|
|
|
model.default_cfg = _cfg()
|
|
if pretrained:
|
|
checkpoint = torch.hub.load_state_dict_from_url(
|
|
url="https://dl.fbaipublicfiles.com/deit/M36_384.pth",
|
|
map_location="cpu", check_hash=True
|
|
)
|
|
checkpoint_no_module = {}
|
|
for k in model.state_dict().keys():
|
|
checkpoint_no_module[k] = checkpoint["model"]['module.'+k]
|
|
|
|
model.load_state_dict(checkpoint_no_module)
|
|
|
|
return model
|
|
|
|
|
|
@register_model
|
|
def cait_M48(pretrained=False, **kwargs):
|
|
model = cait_models(
|
|
img_size= 448 , patch_size=16, embed_dim=768, depth=48, num_heads=16, mlp_ratio=4, qkv_bias=True,
|
|
norm_layer=partial(nn.LayerNorm, eps=1e-6),
|
|
init_scale=1e-6,
|
|
depth_token_only=2,**kwargs)
|
|
|
|
model.default_cfg = _cfg()
|
|
if pretrained:
|
|
checkpoint = torch.hub.load_state_dict_from_url(
|
|
url="https://dl.fbaipublicfiles.com/deit/M48_448.pth",
|
|
map_location="cpu", check_hash=True
|
|
)
|
|
checkpoint_no_module = {}
|
|
for k in model.state_dict().keys():
|
|
checkpoint_no_module[k] = checkpoint["model"]['module.'+k]
|
|
|
|
model.load_state_dict(checkpoint_no_module)
|
|
|
|
return model
|