deit/evolution_search.py
2023-03-03 07:52:09 +00:00

397 lines
15 KiB
Python

import random
import utils
import numpy as np
import time
import torch
import torch.backends.cudnn as cudnn
import argparse
import json
import os
import copy
import random
from engine import evaluate
from datasets import build_dataset
from pathlib import Path
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.models import create_model
from torchvision import datasets, transforms
from collections import defaultdict
import yaml
from yaml.loader import SafeLoader
import model_sparse
from sparsity_factory import get_model_sparsity, weight_pruner_loader
class RandomCandGenerator():
def __init__(self, sparsity_config):
self.sparsity_config = sparsity_config
self.num_candidates_per_block = len(sparsity_config[0]) # might have bug if each block has different number of choices
self.config_length = len(sparsity_config) # e.g., the len of DeiT-S is 48 (12 blocks, each has qkv, fc1, fc2, and linear projection)
self.m = defaultdict(list) # m: the magic dictionary with {index: cand_config}
#random.seed(seed)
v = [] # v: a temp vector for function rec()
self.rec(v, self.m)
def calc(self, v): # generate the unique index for each candidate
res = 0
for i in range(self.num_candidates_per_block):
res += i * v[i]
return res
def rec(self, v, m, idx=0, cur=0): # recursively enumerate all possible candidates and attach unique indexes for them
if idx == (self.num_candidates_per_block-1) :
v.append(self.config_length - cur)
m[self.calc(v)].append(copy.copy(v))
v.pop()
return
i = self.config_length - cur
while i >= 0:
v.append(i)
self.rec(v, m, idx+1, cur+i)
v.pop()
i -= 1
def random(self): # generate a random index and return its corresponding candidate
row = random.choice(random.choice(self.m))
ratios = []
for num, ratio in zip(row, [i for i in range(self.num_candidates_per_block)]):
ratios += [ratio] * num
random.shuffle(ratios)
res = []
for idx, ratio in enumerate(ratios):
res.append(tuple(self.sparsity_config[idx][ratio])) # Fixme:
return res # return a cand_config
class EvolutionSearcher():
def __init__(self, args, model, model_without_ddp, sparsity_config, val_loader, output_dir, config):
self.model = model
self.model_without_ddp = model_without_ddp
self.max_epochs = args.max_epochs
self.select_num = args.select_num
self.population_num = args.population_num
self.m_prob = args.m_prob
self.crossover_num = args.crossover_num
self.mutation_num = args.mutation_num
self.parameters_limits = args.param_limits
self.min_parameters_limits = args.min_param_limits
self.val_loader = val_loader
self.output_dir = output_dir
self.s_prob =args.s_prob
self.memory = []
self.vis_dict = {}
self.keep_top_k = {self.select_num: [], 50: []}
self.epoch = 0
self.candidates = []
self.top_accuracies = []
self.cand_params = []
self.sparsity_config = config['sparsity']['choices']
self.rcg = RandomCandGenerator(self.sparsity_config)
def save_checkpoint(self):
info = {}
info['top_accuracies'] = self.top_accuracies
info['memory'] = self.memory
info['candidates'] = self.candidates
info['vis_dict'] = self.vis_dict
info['keep_top_k'] = self.keep_top_k
info['epoch'] = self.epoch
checkpoint_path = os.path.join(self.output_dir, "checkpoint-{}.pth.tar".format(self.epoch))
torch.save(info, checkpoint_path)
print('save checkpoint to', checkpoint_path)
def is_legal(self, cand):
assert isinstance(cand, tuple)
if cand not in self.vis_dict:
self.vis_dict[cand] = {}
info = self.vis_dict[cand]
if 'visited' in info:
return False
self.model_without_ddp.set_sample_config(cand)
print(cand)
n_parameters = self.model_without_ddp.num_params() / 1e6
info['params'] = n_parameters # sparsity level
print(n_parameters)
if info['params'] > self.parameters_limits:
print('parameters limit exceed')
return False
if info['params'] < self.min_parameters_limits:
print('under minimum parameters limit')
return False
print("rank:", utils.get_rank(), cand, info['params'])
eval_stats = evaluate(self.val_loader, self.model, 'cuda')
info['acc'] = eval_stats['acc1']
info['visited'] = True
return True
def update_top_k(self, candidates, *, k, key, reverse=True):
assert k in self.keep_top_k
print('select ......')
t = self.keep_top_k[k]
t += candidates
t.sort(key=key, reverse=reverse)
self.keep_top_k[k] = t[:k]
def stack_random_cand(self, random_func, *, batchsize=10):
while True:
cands = [random_func() for _ in range(batchsize)]
for cand in cands:
print(cands)
if cand not in self.vis_dict:
self.vis_dict[cand] = {}
info = self.vis_dict[cand]
for cand in cands:
yield cand
def get_random_cand(self):
cand_tuple = self.rcg.random()
return tuple(cand_tuple)
def get_random(self, num):
print('random select ........')
cand_iter = self.stack_random_cand(self.get_random_cand)
while len(self.candidates) < num:
cand = next(cand_iter)
if not self.is_legal(cand):
continue
self.candidates.append(cand)
print('random {}/{}'.format(len(self.candidates), num))
print('random_num = {}'.format(len(self.candidates)))
def get_mutation(self, k, mutation_num, m_prob, s_prob):
assert k in self.keep_top_k
print('mutation ......')
res = []
iter = 0
max_iters = mutation_num * 10
def random_func():
cand = list(random.choice(self.keep_top_k[k]))
# sparsity ratio
for idx in range(len(self.sparsity_config)):
random_s = random.random()
if random_s < m_prob:
cand[idx] = tuple(random.choice(self.sparsity_config[idx]))
return tuple(cand)
cand_iter = self.stack_random_cand(random_func)
while len(res) < mutation_num and max_iters > 0:
max_iters -= 1
cand = next(cand_iter)
if not self.is_legal(cand):
continue
res.append(cand)
print('mutation {}/{}'.format(len(res), mutation_num))
print('mutation_num = {}'.format(len(res)))
return res
def get_crossover(self, k, crossover_num):
assert k in self.keep_top_k
print('crossover ......')
res = []
iter = 0
max_iters = 10 * crossover_num
def random_func():
p1 = random.choice(self.keep_top_k[k])
p2 = random.choice(self.keep_top_k[k])
max_iters_tmp = 50
while len(p1) != len(p2) and max_iters_tmp > 0:
max_iters_tmp -= 1
p1 = random.choice(self.keep_top_k[k])
p2 = random.choice(self.keep_top_k[k])
return tuple(random.choice([i, j]) for i, j in zip(p1, p2))
cand_iter = self.stack_random_cand(random_func)
while len(res) < crossover_num and max_iters > 0:
max_iters -= 1
cand = next(cand_iter)
if not self.is_legal(cand):
continue
res.append(cand)
print('crossover {}/{}'.format(len(res), crossover_num))
print('crossover_num = {}'.format(len(res)))
return res
def search(self):
print(
'population_num = {} select_num = {} mutation_num = {} crossover_num = {} random_num = {} max_epochs = {}'.format(
self.population_num, self.select_num, self.mutation_num, self.crossover_num,
self.population_num - self.mutation_num - self.crossover_num, self.max_epochs))
# self.load_checkpoint()
self.get_random(self.population_num)
while self.epoch < self.max_epochs:
print('epoch = {}'.format(self.epoch))
self.memory.append([])
for cand in self.candidates:
self.memory[-1].append(cand)
self.update_top_k(
self.candidates, k=self.select_num, key=lambda x: self.vis_dict[x]['acc'])
self.update_top_k(
self.candidates, k=50, key=lambda x: self.vis_dict[x]['acc'])
print('epoch = {} : top {} result'.format(
self.epoch, len(self.keep_top_k[50])))
tmp_accuracy = []
for i, cand in enumerate(self.keep_top_k[50]):
print('No.{} {} Top-1 val acc = {}, params = {}'.format(
i + 1, cand, self.vis_dict[cand]['acc'], self.vis_dict[cand]['params']))
tmp_accuracy.append(self.vis_dict[cand]['acc'])
self.top_accuracies.append(tmp_accuracy)
mutation = self.get_mutation(
self.select_num, self.mutation_num, self.m_prob, self.s_prob)
crossover = self.get_crossover(self.select_num, self.crossover_num)
self.candidates = mutation + crossover
self.get_random(self.population_num)
self.epoch += 1
self.save_checkpoint()
def get_args_parser():
parser = argparse.ArgumentParser('DeiT training and evaluation script', add_help=False)
parser.add_argument('--batch-size', default=128, type=int)
# data-params
# evolution search parameters
parser.add_argument('--max-epochs', type=int, default=20)
parser.add_argument('--select-num', type=int, default=10)
parser.add_argument('--population-num', type=int, default=50)
parser.add_argument('--m_prob', type=float, default=0.2)
parser.add_argument('--s_prob', type=float, default=0.4)
parser.add_argument('--crossover-num', type=int, default=25)
parser.add_argument('--epochs', type=int, default=30)
parser.add_argument('--mutation-num', type=int, default=25)
parser.add_argument('--param-limits', type=float, default=5.6)
parser.add_argument('--min-param-limits', type=float, default=5)
parser.add_argument('--output_dir', default='',
help='path where to save, empty for no saving')
parser.add_argument('--num_workers', default=16, type=int)
parser.add_argument('--dist-eval', action='store_true', default=False, help='Enabling distributed evaluation')
parser.add_argument('--input-size', default=224, type=int, help='images input size')
parser.add_argument('--data-path', default='/datasets01/imagenet_full_size/061417/', type=str,
help='dataset path')
parser.add_argument('--data-set', default='IMNET', choices=['CIFAR', 'IMNET', 'INAT', 'INAT19'],
type=str, help='Image Net dataset path')
parser.add_argument('--eval-crop-ratio', default=0.875, type=float, help="Crop ratio for evaluation")
parser.add_argument('--pin-mem', action='store_true',
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no-pin-mem', action='store_false', dest='pin_mem',
help='')
parser.set_defaults(pin_mem=True)
parser.add_argument('--model', default='', type=str, metavar='MODEL',
help='Name of model to train')
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
# Sparsity correlated arguments
parser.add_argument('--sparsity-config', default='', type=str, help='path to the sparsity yaml file')
return parser
def main(args):
utils.init_distributed_mode(args)
print(args)
cudnn.benchmark = True
'''
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD)
])
dataset_val = datasets.ImageFolder(
os.path.join(args.data_path, 'val'),
transform=transform)
'''
dataset_val, _ = build_dataset(is_train=False, args=args)
if True: # args.distributed:
num_tasks = utils.get_world_size()
global_rank = utils.get_rank()
if args.dist_eval:
if len(dataset_val) % num_tasks != 0:
print('Warning: Enabling distributed evaluation with an eval dataset not divisible by process number. '
'This will slightly alter validation results as extra duplicate entries are added to achieve '
'equal num of samples per-process.')
sampler_val = torch.utils.data.DistributedSampler(
dataset_val, num_replicas=num_tasks, rank=global_rank, shuffle=False)
else:
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
data_loader_val = torch.utils.data.DataLoader(
dataset_val, batch_size=int(2 * args.batch_size),
sampler=sampler_val, num_workers=args.num_workers,
pin_memory=args.pin_mem, drop_last=False
)
with open(args.sparsity_config) as f:
sparsity_config = yaml.load(f, Loader=SafeLoader)
print(f"Creating model: {args.model}")
model = create_model(
args.model,
pretrained=True,
num_classes=1000,
drop_rate=0,
drop_path_rate=0,
img_size=args.input_size
)
model.cuda()
model_without_ddp = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
model_without_ddp = model.module
t = time.time()
searcher = EvolutionSearcher(args, model, model_without_ddp, sparsity_config, val_loader=data_loader_val, output_dir = args.output_dir, config=sparsity_config)
searcher.search()
print('total searching time = {:.2f} hours'.format(
(time.time() - t) / 3600))
if __name__ == '__main__':
parser = argparse.ArgumentParser('AutoFormer evolution search', parents=[get_args_parser()])
args = parser.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)
# CUDA_VISIBLE_DEVICES=3 python evolution_svd.py --data-path /dev/shm/imagenet/ --output_dir BASE_EA_13_16.5 --config sparsity_config/Vit_imnet_config_base.json --model deit_dist_base_p16_224_imnet_0416_wo_fc/checkpoint.pth --param-limits 16.5 --min-param-limits 13
#python -m torch.distributed.launch --nproc_per_node=2 evolution_search.py --data-path /home/yysung/imagenet --output_dir deit_small_nxm_ea_124 --sparsity-config configs/deit_small_nxm_ea124.yml --model Sparse_deit_small_patch16_224 --param-limits 13.2 --min-param-limits 8